Understanding Equatorial Pacific Climate Processes via Hierarchical Coupled Modeling

Andrew Wittenberg, Brandon Reichl, Fanrong Zeng (NOAA/GFDL) Xian Wu, Feiyu Lu, Alistair Adcroft (Princeton/AOS/CIMES)

Thanks to: NOAA/CPO Climate Variability & Predictability Program

New postdoc arriving March 2023! (NCAR \rightarrow Princeton)

Andrew Wittenberg NOAA GFDL

Xian Wu Princeton Univ.

Brandon Reichl NOAA GFDL

Fanrong Zeng NOAA GFDL

Feiyu Lu Princeton Univ.

Alistair Adcroft Princeton Univ.

Improving modeling is a key motivation for the new <u>TPOS</u> backbone & process studies.

Project reports:

- Rep 1 (<u>Cravatte et al. 2016</u>): "An urgent need to improve the skill, effectiveness & efficacy of modeling systems that are critical to realizing the impact of an improved TPOS... and to advance understanding & modeling through observing system infrastructure for process studies."
- Rep 2 (<u>Kessler et al. 2019</u>): "Promote observing approaches that jointly measure the ocean & marine boundary layers and air-sea fluxes, principally to support model development..., improve representation of key processes, constrain the coupled system, address biases in observations & models, and improve coupled data assimilation."
- Rep 3 (<u>Kessler et al. 2021</u>): "Encourage process studies leading to improved process parameterizations, towards reducing model biases that degrade the efficacy of observational initializations... Accelerate advances in understanding & predicting tropical Pacific variability... models and their assimilation products are an essential element."
 - \Rightarrow Called for denser obs (y & z) in cold tongue; more currents & surface fluxes

NOAA Climate Program Office (CPO) Climate Variability & Predictability (CVP) Program

Observation & Modeling in support of Tropical Pacific Process Studies, Pre-Field-II

Pacific Upwelling & Mixing Physics (PUMP), and Air-sea Interaction at the Eastern Edge of the Warm Pool (EEWP)

Key focus: What should TPOS measure to improve understanding, modeling, and predictions?

8 new projects funded for 2023-2025

(building on 8 prior projects funded by Pre-Field-I, 2019-2021)

Ocean data assimilation & USV/UAV OSSEs (Mazloff et al.; Serra et al.; Zhang et al.) Coupled boundary layers, fluxes, waves (Seo et al.; Subramanian et al.; Clayson et al.) Improving mixing in OGCMs (Deppenmeier et al.) Improving CGCMs for forecasts & projections (Wittenberg et al., GFDL/Princeton)

Focus on eqPac biases in CGCMs

Future tropical Pacific climate, ENSO, & global impacts depend on a subtle balance of **coupled**, **multi-scale**, **intermittent**, **often nonlocal** processes.

Unresolved physics in CMIP-class models:

Clouds & convection, diurnal cycle, TIWs, shears & mixing, barrier layers, air-sea fluxes, ...

- \rightarrow Errors + coupled feedbacks
- \rightarrow Model biases
- \rightarrow Degrade initializations, forecasts, projections

Need a hierarchy of coupled model tools to:

- Attribute emergent coupled biases
- Guide TPOS sampling to actually improve CGCMs
- Test new parameterizations in coupled/global context
- Identify where empirical corrections could help

Mechanisms of equatorial Pacific climate change Lee et al. (npiCAS 2022) & Climate.gov ENSO blog

NOAA Climate.gov

Objectives

- 1. **Improve the diagnostic hierarchy** for eqPac biases in CGCMs.
- 2. Advance understanding of eqPac's role in climate & ENSO, and of coupled nonlocal feedbacks across scales (diurnal, TIW, S2S, ENSO, TPDV, mean, future change).
- 3. Attribute & reduce biases in NOAA/GFDL CGCMs & products, via better eqPac physics (mixing, fluxes, convection, clouds), bias corrections, and emergent constraints.
- 4. **Inform the TPOS strategy.** Provide broad-scale *context* for TPOS "regime-based" sampling, and target obs to inform CGCMs and their products (reanalyses, S2D forecasts, projections).

Approach

Hierarchy of

- **Simulations**: resolution, coupling, obs constraints (global & regional)
- Metrics: heat/momentum/moisture/salt/mixing budgets; CLIVAR ENSO metrics
- Reference datasets: obs, reanalyses, LES & high-res sims from prior TPOS studies

Main modeling tools:

- GFDL SPEAR & CM4 global CGCMs: large ensembles (1850-2100) & reforecasts Resolution: 1°A, 1°O → 0.25°A, 0.25°O Free, nudged, and bias-corrected (FA, OTA) Assimilation-initialized & model-analog forecasts
- GFDL MOM6 OMIP2: Global, regional, and 1d single-column versions
- GFDL ECDA (Ensemble Coupled Data Assimilation) System

Relevance & Broader Impacts

- TPOS process studies & backbone design \rightarrow better **observations**

- Better scientific understanding
 - \rightarrow better parameterizations, bias corrections, *CLIVAR ENSO Metrics*
 - \rightarrow better CGCMs
- GFDL SPEAR model + ECDA \rightarrow NMME \rightarrow seasonal-to-decadal **forecasts**
- GFDL-CM5/ESM5 models \rightarrow CMIP7 \rightarrow IPCC **projections**

Recent Progress

- Completed SPEAR free & FA ensembles (1851-2100, 30 members each)
 - Atm/ocn resolution affects clouds, convection, rain, TIWs, mixing \rightarrow ENSO
 - FA improves troPac climate & ENSO \rightarrow boosts future ENSO rain extremes
 - Bias corrections (FA/OTA) improve SPEAR ENSO forecasts
- MOM6 OMIP2 tests (1d, regional, global) vs. Argo & LES
 - Stratified shear-driven mixing (Jackson et al. 2008)
 - ePBL ocean boundary layer mixing + convection + Langmuir (Reichl & Li 2019)
 - Refined vertical layers $(\Delta z^*) \rightarrow$ smoothes mixing variations in warm pool
 - Weaken equatorial bkgd z-viscosity, ePBL mixing, submeso MLE restrat

\rightarrow Much better diurnal cycle & near-surface stratification

- Strengthen equatorial background z-diffusivity \rightarrow deeper thermocline
- MOM6-1d with **GOTM GLS mixing** reproduces LES \rightarrow valuable reference model!
- Finalizing & analyzing SPEAR_HI_25 (0.25°A, 0.25°O)

ePBL changes \rightarrow Better eqPac upper-ocean diurnal cycle

from Brandon Reichl (AMS, Jan 2023)

LES & MOM6-1d simulations on equator at 140°W, forced by 8xdaily JRA55-do & ROMS, ~30 days

- **OM4-revised** corrects the problematic ePBL mixing \rightarrow more realistic diurnal cycle

- Phase-shift in downward propagation of turbulent fluxes remains \rightarrow ongoing work

Mixing changes \rightarrow Better eqPac dT/dz

from Brandon Reichl (AMS, Jan 2023)

0.25° MOM6 global OGCM (forced by 8xdaily JRA55-do, 1999-2008) Equatorial slice for upper 300m of ocean

Next Steps

- Test/tune ocean mixing improvements in global coupled SPEAR
- Finalize **SPEAR_HI_25**
- Monthly CVP/TPOS PI meetings Also meet with NCAR team (Deppenmeier, Cherian, Bryan) on 21 Feb
- Postdoc Xian Wu starts at GFDL on 13 March
 - \rightarrow Gather/process reference & simulation datasets
 - \rightarrow Spin up on literature, theory, models, diagnostics
 - \rightarrow Start analyzing eqPac heat budgets (mean, diurnal, TIW, ENSO)