Understanding Equatorial Pacific Climate Processes via Hierarchical Coupled Modeling

Andrew Wittenberg, Brandon Reichl, Fanrong Zeng (NOAA/GFDL)
Xian Wu, Feiyu Lu, Alistair Adcroft (Princeton/AOS/CIMES)

Thanks to: NOAA/CPO Climate Variability & Predictability Program

New postdoc arriving March 2023!
(NOAR → Princeton)
Improving modeling is a key motivation for the new TPOS backbone & process studies.

Project reports:

Rep 1 (Cravatte et al. 2016): “An urgent need to improve the skill, effectiveness & efficacy of modeling systems that are critical to realizing the impact of an improved TPOS… and to advance understanding & modeling through observing system infrastructure for process studies.”

Rep 2 (Kessler et al. 2019): “Promote observing approaches that jointly measure the ocean & marine boundary layers and air-sea fluxes, principally to support model development…, improve representation of key processes, constrain the coupled system, address biases in observations & models, and improve coupled data assimilation.”

Rep 3 (Kessler et al. 2021): “Encourage process studies leading to improved process parameterizations, towards reducing model biases that degrade the efficacy of observational initializations… Accelerate advances in understanding & predicting tropical Pacific variability… models and their assimilation products are an essential element.”

⇒ Called for denser obs (y & z) in cold tongue; more currents & surface fluxes
Observation & Modeling in support of Tropical Pacific Process Studies, Pre-Field-II

Pacific Upwelling & Mixing Physics (PUMP), and Air-sea Interaction at the Eastern Edge of the Warm Pool (EEWP)

Key focus: What should TPOS measure to improve understanding, modeling, and predictions?

8 new projects funded for 2023-2025 (building on 8 prior projects funded by Pre-Field-I, 2019-2021)

Ocean data assimilation & USV/UAV OSSEs (Mazlof et al.; Serra et al.; Zhang et al.)
Coupled boundary layers, fluxes, waves (Seo et al.; Subramanian et al.; Clayson et al.)
Improving mixing in OGCMs (Deppenmeier et al.)
Improving CGCMs for forecasts & projections (Wittenberg et al., GFDL/Princeton)
Focus on eqPac biases in CGCMs

Future tropical Pacific climate, ENSO, & global impacts depend on a subtle balance of coupled, multi-scale, intermittent, often nonlocal processes.

Unresolved physics in CMIP-class models:
Clouds & convection, diurnal cycle, TIWs, shears & mixing, barrier layers, air-sea fluxes, …
→ Errors + coupled feedbacks
→ Model biases
→ Degrade initializations, forecasts, projections

Need a hierarchy of coupled model tools to:
- Attribute emergent coupled biases
- Guide TPOS sampling to actually improve CGCMs
- Test new parameterizations in coupled/global context
- Identify where empirical corrections could help
Objectives

1. **Improve the diagnostic hierarchy** for eqPac biases in CGCMs.

2. **Advance understanding** of eqPac’s role in climate & ENSO, and of coupled nonlocal feedbacks across scales (diurnal, TIW, S2S, ENSO, TPDV, mean, future change).

3. **Attribute & reduce biases** in NOAA/GFDL CGCMs & products, via better eqPac physics (mixing, fluxes, convection, clouds), bias corrections, and emergent constraints.

4. **Inform the TPOS strategy.** Provide broad-scale context for TPOS “regime-based” sampling, and target obs to inform CGCMs and their products (reanalyses, S2D forecasts, projections).
Approach

Hierarchy of
- **Simulations**: resolution, coupling, obs constraints (global & regional)
- **Metrics**: heat/momentum/moisture/salt/mixing budgets; [CLIVAR ENSO metrics](#)
- **Reference datasets**: obs, reanalyses, LES & high-res sims from prior TPOS studies

Main modeling tools:
- **GFDL SPEAR & CM4** global CGCMs: large ensembles (1850-2100) & reforecasts
 Resolution: 1°A, 1°O → 0.25°A, 0.25°O
 Free, nudged, and bias-corrected (FA, OTA)
 Assimilation-initialized & model-analog forecasts
- **GFDL MOM6** OMIP2: Global, regional, and 1d single-column versions
- **GFDL ECDA** (Ensemble Coupled Data Assimilation) System
Relevance & Broader Impacts

- TPOS process studies & backbone design → better **observations**

- Better scientific **understanding**
 → better parameterizations, bias corrections, *CLIVAR ENSO Metrics*
 → better **CGCMs**

- GFDL SPEAR model + ECDA → NMME → seasonal-to-decadal **forecasts**

- GFDL-CM5/ESM5 models → CMIP7 → IPCC **projections**
Recent Progress

- Completed **SPEAR free & FA ensembles** (1851-2100, 30 members each)
 - Atm/ocn resolution affects clouds, convection, rain, TIWs, mixing → ENSO
 - FA improves troPac climate & ENSO → boosts future ENSO rain extremes
 - Bias corrections (FA/OTA) improve SPEAR ENSO forecasts

- **MOM6 OMIP2** tests (1d, regional, global) vs. Argo & LES
 - Stratified shear-driven mixing (**Jackson et al. 2008**)
 - ePBL ocean boundary layer mixing + convection + Langmuir (**Reichl & Li 2019**)
 - **Refined vertical layers** (Δz^*) → smoothes mixing variations in warm pool
 - Weaken equatorial bkgd z-viscosity, ePBL mixing, submeso MLE restrat
 → **Much better diurnal cycle & near-surface stratification**
 - Strengthen equatorial background z-diffusivity → **deeper thermocline**
 - MOM6-1d with **GOTM GLS mixing** reproduces LES → valuable reference model!

- Finalizing & analyzing **SPEAR_HI_25** (0.25°A, 0.25°O)
ePBL changes → Better eqPac upper-ocean diurnal cycle
from Brandon Reichl (AMS, Jan 2023)
LES & MOM6-1d simulations on **equator at 140°W**, forced by 8xdaily JRA55-do & ROMS, ~30 days

Diurnal composite of **downward heat flux** (red=down) over full simulation

- **OM4-revised** corrects the problematic ePBL mixing → more realistic diurnal cycle
- Phase-shift in downward propagation of turbulent fluxes remains → ongoing work
Mixing changes → Better eqPac dT/dz
from Brandon Reichl (AMS, Jan 2023)

0.25° MOM6 global OGCM
(forced by 8xdaily JRA55-do, 1999-2008)
Equatorial slice for upper 300m of ocean

Impact of parameterization change

Better ePBL mixing (better diurnal cycle)

10x less background vertical viscosity (stronger shears)

2x more background vertical diffusivity

Simulated dT/dz bias [$°C/m$] relative to Argo (1999-2008)

Reduced equatorial biases

Shallow & “steppy” thermocline

Original OM4
Next Steps

- Test/tune **ocean mixing improvements** in global coupled SPEAR

- Finalize **SPEAR_HI_25**

- Monthly CVP/TPOS PI meetings
 Also meet with NCAR team (Deppenmeier, Cherian, Bryan) on 21 Feb

- Postdoc **Xian Wu** starts at GFDL on 13 March
 → Gather/process reference & simulation datasets
 → Spin up on literature, theory, models, diagnostics
 → Start analyzing eqPac heat budgets (mean, diurnal, TIW, ENSO)