Southern Ocean carbon in the Community Earth System Model

Matthew C. Long
NCAR, NESL, CGD, ASP

with thanks to
Keith Lindsay, Scott Doney, Peter Gent, Gokhan Danabasoglu, Nicole Lovenduski, Synte Peacock, and Markus Jochum

CLIVAR/CliC/SCAR Southern Ocean Region Panel Meeting 2011
19 October 2011
Human perturbation of the global carbon cycle

Anthropogenic CO$_2$: emissions and sinks

1 Pg = 10^{15} g

:: Motivation ::
Human perturbation of the global carbon cycle

The ocean carbon sink

Carbon inventories* (Pg C)

- Natural \(C_{ant} \)
- Emissions:
 - Atm: \([590 + 165]\)
 - Land: \([2,300 + 65 - 124]\)
 - Ocean: \([38,000 + 118]\)

*mid-1990s

Sabine et al. 2004
Southern Ocean dominates uptake of C_{ant}

Anthropogenic CO$_2$

Khatiwala et al. 2009
Southern Ocean meridional circulation

Gruber et al. 2009
Highly sensitive to climate change

- Westerlies drive Antarctic Circumpolar Current;
- Divergence pulls deepwater from ocean interior;
- Wind position & strength modulates ventilation;
- Winds respond to climate variability & change.

Southern Annular Mode

Windstress anomaly [N m$^{-2}$]

(1st EOF of SLP in 1000-yr control simulation.)
Models show large discrepancies in Southern Ocean fluxes

Gruber et al. 2009
Community Earth System Model

- Atm CAM4
- Land CLM4
- Ocean POP2
- Ice CICE4
- Coupler CPL7

- Energy and mass conserving;
- Internal climate variability;
- External perturbations (i.e. CO$_2$ emissions).
CESM Biogeochemical Element Model (BEC)

- Inorganic tracers: NO$_3$, NH$_4$, PO$_4$, Si(OH)$_3$, Fe, O$_2$, DIC, & Alkalinity
- Phytoplankton:
 - pico/nano diatoms, diazotrophs
 - Growth, N$_2$ fixation, Calcification
 - Excretion
 - Mortality & aggregation
- Zooplankton (adaptive):
 - Grazing
 - Mortality & sloppy feeding
- Detritus:
 - suspended/DOM
 - large (POM, silica, CaCO$_3$, dust)
 - Remineralization & dissolution
 - Sinking
- Chlorophyll:
 - pico/nano diatoms, diazotrophs
 - Photoadaption

- 4 Plankton functional types:
 - 3 autotrophs, 1 grazer
 - implicit calcifiers
 - explicit N fixers

- Nutrients: N, P, Si, Fe

- Fixed C:N:P stochiometry

- Variable Fe:C, Si:C, & Chl:C

- Nonlinear carbon chemistry

- Atm. deposition: Fe & N

- Dynamic Fe cycle

References:
Moore, Doney, & Lindsay, *GBC*, 2004.

Doney et al., *J. Mar. Systems*, 2009
Two 20th-Century experiments: ocean-ice & coupled

1. CORE20C: CORE-forced hindcast (60 year repeating cycle)

Physical fields & dynamical tracers reinitialized at each cycle.

2. CPLD20C: fully-coupled 20th Century integration

Transient: prescribed $p\text{CO}_2\text{atm}$ (branched at year 151)

Control: prescribed $p\text{CO}_2\text{atm}$
One ocean model, different atmospheric forcing

Zonal-mean zonal windstress

Coupled model winds:
- max wind stress $\sim 50\%$ greater;
- shifted poleward.
Antarctic circumpolar current

Barotropic streamfunction

Stronger winds in coupled model drive accelerated ACC flow.

Model validation
Seasonal $p\text{CO}_2^{SW}$-cycle is well simulated

:: Model validation ::

- Takahashi (Obs)
- Hindcast
- Coupled

<table>
<thead>
<tr>
<th>Obs. mean</th>
<th>CORE bias</th>
<th>Coupled bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.8</td>
<td>+1.5</td>
<td>+2.3</td>
</tr>
<tr>
<td>-2.8</td>
<td>+0.5</td>
<td>+2.2</td>
</tr>
<tr>
<td>-6.8</td>
<td>-1.8</td>
<td>+3.0</td>
</tr>
<tr>
<td>-3.8</td>
<td>+0.6</td>
<td>+2.7</td>
</tr>
<tr>
<td>-5.6</td>
<td>-1.2</td>
<td>+2.4</td>
</tr>
<tr>
<td>-4.0</td>
<td>+1.0</td>
<td>+2.3</td>
</tr>
<tr>
<td>-6.2</td>
<td>-1.6</td>
<td>+3.0</td>
</tr>
<tr>
<td>-3.2</td>
<td>+0.4</td>
<td>+2.1</td>
</tr>
<tr>
<td>-5.0</td>
<td>-1.4</td>
<td>+2.7</td>
</tr>
<tr>
<td>-4.4</td>
<td>+0.8</td>
<td>+2.5</td>
</tr>
<tr>
<td>-6.0</td>
<td>-1.2</td>
<td>+3.0</td>
</tr>
<tr>
<td>-3.6</td>
<td>+0.6</td>
<td>+2.4</td>
</tr>
<tr>
<td>-5.4</td>
<td>-1.4</td>
<td>+2.7</td>
</tr>
<tr>
<td>-4.8</td>
<td>+0.8</td>
<td>+2.5</td>
</tr>
<tr>
<td>-6.2</td>
<td>-1.2</td>
<td>+3.0</td>
</tr>
<tr>
<td>-3.6</td>
<td>+0.6</td>
<td>+2.4</td>
</tr>
</tbody>
</table>
Air-sea CO$_2$ flux: mean seasonal cycle

(Obs: ΔpCO$_2$ climatology)

:: Model validation ::
Zonally integrated air-sea fluxes

Contemporary fluxes

(Obs: ocean inversion, $\Delta p\text{CO}_2$ climatology)

- CORE20C
- CPLD20C
- Ocean Inversion
- $\Delta p\text{CO}_2$ climatology

CO_2 flux [Pg C yr$^{-1}$]

<44°S | 44°S-18°S | 18°S-18°N | 18°N-49°N | >49°N

Takahashi et al. 2009; Gruber et al. 2009

:: Model validation ::
Zonally integrated air-sea fluxes

(Flux components)

(Obs: ocean inversion)

Gruber et al. 2009
Mechanisms governing variability in air-sea CO$_2$ flux

RMS of air-sea CO$_2$ flux

Components of variability

Air-sea exchange:

\[F_{co2} = (k\alpha)\Delta pCO_2 \]

\[F'_{co2} = (k\alpha)'\Delta pCO_2 + (k\alpha)\Delta pCO'_2 \]

\[+ \left((k\alpha)'\Delta pCO'_2 - (k\alpha)'\Delta pCO'_2 \right) \]

\[k = \text{piston velocity, } f(U_{10}, T); \alpha = \text{solubility, } f(T, S) \]
Mechanisms governing pCO$_2$ variability

\[pCO'_2 \approx \frac{\partial pCO_2}{\partial T} T' + \frac{\partial pCO_2}{\partial S_{FW}} S' + \frac{\partial pCO_2}{\partial DIC} sDIC' + \frac{\partial pCO_2}{\partial Alk} sAlk' \]

Doney et al. 2009
Mechanisms governing DIC variability

RMS of annual (ΔDIC/Δt) vs. Contribution of CO$_2$ flux

Contribution of net biological uptake vs. Contribution of horizontal and vertical advection

Contribution of horizontal and vertical diffusion vs. Contribution of CO$_2$ virtual flux

Doney et al. 2009
Trends in coupled model Southern Hemisphere winds

Maximum zonal-mean zonal windstress

11-year running mean

Control ± 1σ (900 years)
Trends in coupled model Southern Hemisphere windstress

Maximum zonal-mean zonal wind

NCEP reanalysis
(+0.1 N m$^{-2}$ offset)

Control ± 1σ
(900 years)

11-year running mean
Trends in Southern Ocean CO₂ fluxes

Spatially-integrated fluxes (south of 45°S)

Trends (Pg yr⁻²)

<table>
<thead>
<tr>
<th>CORE¹</th>
<th>Coupled</th>
<th>CCSM3²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern: -0.003</td>
<td>-0.007</td>
<td>-0.004</td>
</tr>
<tr>
<td>Natural: +0.007</td>
<td>+0.001</td>
<td>+0.005</td>
</tr>
<tr>
<td>Anthro: -0.011</td>
<td>-0.010</td>
<td>+0.009</td>
</tr>
</tbody>
</table>

¹ Includes 0.004 Pg yr⁻² global correction.
² Lovenduski et al. 2008

CCSM-3 (Lovenduski et al. 2008)
Trends in Southern Ocean CO₂ fluxes

Spatially-integrated fluxes (south of 45°S)

- Little change in CO₂ flux trends with each successive forcing cycle.

MOC components

- 20th Century trends

:: 20th Century trends ::

23
Southern Ocean anthropogenic CO$_2$

Time-integrated uptake

Storage (mid-1990s)
Southern Ocean anthropogenic CO₂

Zonal integral of C_{ant}

Time-integrated uptake

Coupled (56 Pg)

CORE-forced (54 Pg)

Storage

Coupled (50 Pg)

CORE-forced (51 Pg)

Meridional overturning circulation

:: Transient tracer uptake ::
Southern Ocean anthropogenic CO$_2$

Observations (ΔC^*)
Southern Ocean tracer uptake

pCFC-11

Anthropogenic CO$_2$

Explanations?

- Surface biases?
- Weak mode and intermediate water formation?
- C_{ant} observations: ΔC^* method has a known vertical bias, underestimating concentrations at depth.

:: Transient tracer uptake ::
Surface biases

Sea surface temperature bias

Winter mixed layer depth bias

Obs: HadISST

Obs: de Boyer Montégut et al., JGR 2004
Weak mode water formation

Potential vorticity
Low PV = Subantarctic Mode Water

In the model:
Stratification prevents convection and subduction north of the ACC?
Buoyancy forcing is incorrect?

Weak buffering: High Revelle factor \rightarrow reduced CO$_2$ uptake

Revelle Factor

$$RF := \frac{\partial p\text{CO}_2}{\partial \text{DIC}} \frac{\text{DIC}}{p\text{CO}_2}$$

Computed analytically from thermodynamic equilibrium equations.
21st Century response

Atmospheric CO$_2$

Global C$_{ant}$ flux

Southern Ocean C$_{ant}$ flux

negative := ocean uptake

:: 21st Century predictions ::
21st Century response
Mixed layer depth

Sea surface temperature

:: 21st Century predictions ::
Southern Ocean carbon budget

Late 20th Century (1995–2005)

CaCO$_3$ formation

CaCO$_3$

[POC + DOC] [1.1]

[POC + DOC] [0.1]

DIC [288 + 4]

DIC [7,484 + 14]

NPP 7.9

Respiration 6.2

0.07 (vf)

-0.00

0.63

16.3

1.6

17.2

1.8

0.1

1.3

0.3

19.1

2.2

1.3

0.1

0.1

0.1

Inventories (Pg C):
[Natural + C_{ant}]

Fluxes: Pg C yr$^{-1}$

:: 21st Century predictions ::
Southern Ocean carbon budget

Late 21st Century (2090–2100, RCP8.5)

Inventories (Pg C):
[Natural + C\textsubscript{ant}]
Fluxes: Pg C yr-1

:: 21st Century predictions ::
In general, modeled ocean C fields and patterns of air-sea exchange compare well with observations.

Advection of DIC is the dominant control on interannual air-sea flux variability in the Southern Ocean, with biological uptake (related to dust fluxes) making locally important contributions.

Southern Ocean uptake of anthropogenic tracers is weak relative to observationally-based estimates. The representation of physical processes controlling ventilation and subduction is the primary problem; biases at the sea surface may also play a role.