Seasonal-to-Decadal Prediction

F. J. Doblas-Reyes, ICREA & CFU-IC3
Barcelona, Spain
Prediction on climate time scales

Progression from initial-value problems with weather forecasting at one end and multi-decadal to century projections as a forced boundary condition problem at the other, with climate prediction (sub-seasonal, seasonal and decadal) in the middle. Prediction involves initialization and systematic comparison with a simultaneous reference.

Adapted from Meehl et al. (2009)
Initialisation

- Real-time ocean analysis comparison. Temperature anomalies along the Equator based on 1981-2010 climatology.
- Large spread in real-time initial conditions (similar message from CLIVAR-GSOP).
- Good observations of the whole system are absolutely fundamental for accurate predictions.

Y. Xue (CPC)
Seasonal predictions

Dynamical seasonal (and in many cases also sub-seasonal) predictions are regularly made by the global producing centres (GPCs).

WMO Lead Centre for long range forecast multi-model ensembles: www.wmolc.org
Climate Historical Forecast Project

- WGSIP’s CHFP is the largest public repository of multi-model seasonal hindcasts.
- Data server at CIMA http://chfps.cima.fcen.uba.ar being transferred to ESGF data node.
Climate Historical Forecast Project

- To include the ENSEMBLES and NMME hindcasts this year.
- To be linked to the IRI data library for use with the CPT in capacity building events; proposal submitted to FE Fast Track Initiative/Cluster Activity call, but not fully accepted.
CHFP sub-projects

• Areas of untapped skill were identified at the WCRP 2007 workshop on seasonal prediction.

• Lead to three additional experiments:
 - Land surface, the GLACE2 experiment (started by R. Koster): Soil moisture experiments in seasonal mode. Data for ten different systems available from R. Koster upon request. Transposed to assess impact of snow initial conditions (snowGLACE).
 - Stratosphere, Stratospheric Historical Forecast Project (A. Scaife): High top-Low top four-month hindcasts from 1989 starting in May and November.

• Recently revised with new experiments.
Difference in the correlation of the ensemble-mean near-surface temperature from two experiments, one using a realistic and another a climatological land-surface initialisation. Results for EC-Earth2.3 started every May over 1979-2010 with ERAInt and ORAS4 initial conditions and a sea-ice reconstruction.

Skill difference for mean T

Skill difference for T max

C. Prodhomme (IC3)
Tropical/extra-tropical links

Composite precipitation differences (La Niña minus El Niño) based on years which observed seasonal mean Nino3.4 exceeds ±1 standard deviation over 1982-2009, from GPCP observations (left) and the CHFP ensemble at 1-month lead time (right), for JJA (top) and DJF (bottom).

Kirtman et al. (in prep.)
WGSIP science projects

• Leverage resources from the community to analyse the huge amount of experiments already available. Identify key problems that hamper progress in climate prediction. Design new experiments. Link to S2S and other initiatives.

• Lead to three science projects:
 - **Model drift/initial shock and model validation within the first month**: Mikhail Tolstykh (lead atmosphere), Bill Merryfield (lead ocean) => links to coupled initialisation (note that initialisation is not data assimilation)
 - **Interaction/teleconnection between tropics and extratropics**: Laura Ferranti, Hervé Douville (co-lead)
 - **SNOW Glace**: Jee-Hoon Jeong, Yvan Orsolini (co-lead) -> ACTION: Build links with GEWEX and CliC (SnowMIP)

• Inspiring instead of prescribing. Gain visibility among those not familiar with climate prediction.

• Work plans available this autumn.
The subseasonal-to-seasonal (S2S) prediction initiative is a WWRP/WCRP joint initiative with objectives:

- To improve forecast skill and understanding on the subseasonal to seasonal timescale with special emphasis on high-impact weather events
- To promote the initiative’s uptake by operational centres and exploitation by the applications community
- To capitalize on the expertise of the weather and climate research communities to address issues of importance to the GFCS
- Open data access
THORPEX legacy projects

The WWRP/WCRP Polar Prediction Project (PPP) promotes cooperative research enabling improved prediction services for the polar regions, on time scales from hourly to seasonal. This is the hourly to seasonal research component of the WMO Global Integrated Polar Prediction System (GIPPS), and complementary to WCRP-PCPI. WGSIP contributes to the links between polar and non-polar regions (workshop in December) and the organisation of YOPP.
Decadal prediction

The Decadal Climate Prediction Panel (DCPP) promotes coordinated decadal prediction experimental set ups and informal near-real time exchange of multi-model forecasts. It also organises the decadal MIP towards CMIP6 (with four components, and including consideration of a transpose CMIP).

The DCPP is managed by WGSIP, WGCM and CLIVAR; chair George Boer.

The term "decadal prediction" encompasses predictions on annual, multi-annual to decadal timescales. The possibility of making skillful forecasts on these timescales, and the ability to do so, is investigated by means of predictability studies and retrospective predictions (hindcasts) made using the current generation of climate models as well as by means of statistical approaches. Skillful decadal prediction of relevant climate parameters is a Key Deliverable of the WCRP’s Grand Challenge of providing Regional Climate Information.

The DCPP envisions four components:

- **Hindcasts**: the design and organization of a coordinated decadal prediction (hindcast) component of CMIP6 in conjunction with the seasonal prediction and climate modelling communities

- **Forecasts**: the ongoing production of experimental quasi-operational decadal climate predictions in support of multi-model annual to decadal forecasting and the application of the forecasts

- **Predictability and mechanisms**: the organization and coordination of decadal climate predictability studies including the study of the mechanisms that determine predictability

- **Case studies**: the organization and coordination of case studies to investigate the ability to predict particular climate shifts and variations that have occurred and to identify the processes determining these behaviours
Predictions and projections

Annual-mean global-mean temperature predictions and projections from CMIP5.

IPCC AR5 WGI (2013)
Some open fronts

- **Work on initialisation**: initial conditions for all components (including better ocean), better ensemble generation, etc. Link to observational and reanalysis efforts.

- **Model improvement**: leverage knowledge and resources from modelling at other time scales (improve sea ice, treatment of volcanic and anthropogenic aerosols, vegetation and land, etc); drift reduction; more efficient codes and adequate computing resources.

- **Calibration and combination**: empirical prediction (better use of current benchmarks), local knowledge.

- **Forecast quality assessment**: scores closer to the user, reliability as a main target, process-based verification.

- **More sensitivity to the users’ needs**: going beyond downscaling, better documentation (e.g. use the IPCC language), demonstration of value and outreach.
SPECS FP7

SPECS will deliver a new generation of European climate forecast systems, including initialised Earth System Models (ESMs) and efficient regionalisation tools to produce quasi-operational and actionable local climate information over land at seasonal-to-decadal time scales with improved forecast quality and a focus on extreme climate events, and provide an enhanced communication protocol and services to satisfy the climate information needs of a wide range of public and private stakeholders.