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ABSTRACT. Estimating a glacier’s volume by inferring properties at depth (e.g. bed topography or basal
slip) from properties observed at the surface (e.g. area and slope) creates a calculation instability that
grows exponentially with the size of the glacier. Random errors from this inversion instability can
overwhelm all other sources of error and can corrupt thickness and volume calculations, unless
problematic short spatial wavelengths are specifically excluded. Volume/area scaling inherently filters
these short wavelengths and automatically eliminates the instability, while numerical inversions can
also give stable solutions by filtering the correct wavelengths explicitly, as is frequently done when
‘regularizing’ a model. Each of the scaling and numerical techniques has applications to which it is
better suited, and there are trade-offs in resolution and accuracy; but when calculating volume, neither
the modeling nor the scaling approach offers a fundamental advantage over the other. Both are
significantly limited by the inherently ‘ill-posed’ inversion, and even though both provide stable volume
solutions, neither can give unique solutions.
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INTRODUCTION
A glacier’s volume is its most fundamental geometric
property, and knowledge of changes in the total volume of
all the world’s glaciers and ice caps (GIC) is essential in
making accurate estimates of near-term sea-level rise (Meier
and others, 2007; Bahr and others, 2009; Pfeffer, 2011;
Radić and Hock, 2011; Mernild and others, 2013). Un-
fortunately, among the hundreds of thousands of glaciers
and ice caps around the world, direct volume observations
exist for only a scant few. In almost all cases, a glacier’s
volume (as well as subsurface geometry, internal velocities,
sliding rates and other internal parameters) is inferred from
surface parameters (e.g. surface mass balance, surface
velocity and surface geometry). In particular, estimates of
GIC volume have been extrapolated from surface area using
volume/area scaling (Chen and Ohmura, 1990; Bahr and
others, 1997; Radić and Hock, 2010) and have, more
recently, been extrapolated by numerical inversions of
emergence velocities and the surface geometry (e.g. Huss
and Farinotti, 2012; Clarke and others, 2013).

Both volume/area scaling and numerical inversions take
information about the surface boundary of a glacier and
extrapolate that information to the bottom boundary. For
example, a typical scaling analysis uses the surface area to
estimate the volume; or more explicitly, scaling is used to
estimate the mean glacier thickness, from which volume
(thickness� area) is estimated. Similarly, numerical inver-
sions for volume also give estimates of the position of the
bottom boundary, because no matter how it is calculated, a
glacier’s estimated volume together with easily observed
area gives us information about the average thickness of the
ice. Although volume/area scaling is not often called an
inversion, it is in essence an inversion: surface data are being
used to infer unseen parameters within the glacier, such as
thickness (e.g. Lliboutry, 1987, p. 177; Zhdanov, 2002, p. 4).

Inversions of this type over-specify data on one bound-
ary (the glacier surface) and under-specify the conditions

on another boundary (the glacier bed). An unbalanced
placement of boundary conditions is a notorious way to
create unstable solutions (e.g. Courant and Hilbert, 1966,
p. 227–230), and for the system of equations that describe a
glacier (continuity, force balance and constitutive), placing
all of the boundary conditions at the surface can create
both a calculation instability and an ‘ill-posed boundary-
value problem’ (e.g. Lliboutry, 1987, p. 11, 178). The term
‘ill-posed’ does not indicate that the boundary conditions
are incorrect or improperly specified. Instead, as originally
defined by Hadamard, a problem is ill-posed (1) if the
solution is not unique or (2) if the solution is not stable (not
continuously dependent on the data) or (3) if the solution
does not exist (Zhdanov, 2002). Importantly, we do not
have to show that each of (1), (2) and (3) are true to
establish the ill-posed problem; we only need to show that
any one (or more) of (1), (2) and (3) are true. Generally
geophysicists assume the existence of a solution (it is
rarely proved a priori) and instead focus on stability, but for
our arguments we will focus on both stability and
uniqueness. Intuitively, both an instability and/or non-
uniqueness imply that there are a cloud of other possible or
likely solutions.

In the case of glaciers, the ill-posed problem is purely a
consequence of how boundary conditions are applied; it has
nothing to do with the type of numerical solution, and will
exist whether or not the glacier volume is derived from a
finite-element analysis, finite-difference analysis, volume/
area scaling analysis or by any other approach. The ill-posed
nature of the problem is inevitable, and, as long as the
boundary conditions are over-specified on the surface and
under-specified at the bed, it cannot be improved with
better models, different models, new models or analytical or
numerical models. The solution is intrinsically unstable (or
non-unique) because of the manner in which the boundary-
value problem has been set up. Until there are additional
data specified at points other than at the surface of the
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glacier, the volume solution will remain ill-posed (e.g.
Courant and Hilbert, 1966; Zhdanov, 2002).

Ill-posed boundary-value problems are well studied in
engineering, applied mathematics, geophysics and their
associated disciplines. For many ill-posed geophysical
problems, approximate rather than exact solutions are
possible, though ‘inverse source problems’ of the type
discussed here will have an infinite number of possible
approximations (Zhdanov, 2002, p. 4 and 18). Within
glaciology, the theoretical and practical implications of ill-
posed inversions have been evaluated by a number of
authors, including Hantz and Lliboutry (1981), Balise and
Raymond (1985), Lliboutry (1987, p. 177), MacAyeal
(1993), Bahr and others (1994), Joughin and others (2004),
Truffer (2004), Chandler and others (2006), Gudmundsson
and Raymond (2008), Maxwell and others (2008) and
Raymond and Gudmundsson (2009), among many others.
The theoretical implications are that information is lost
exponentially as a calculation progresses deeper into a
glacier and becomes increasingly unstable (Bahr and others,
1994; Zhdanov, 2002, p. 26). Therefore, appropriate control
of the calculation can dampen (though not eliminate) the
instability and can lead to reasonable and approximate
(though non-unique and less precise) solutions.

For example, reasonable solutions have been approxi-
mated by many numerical approaches, (e.g. Huss and
Farinotti, 2012; Clarke and others, 2013). In these models, a
numerical inversion uses surface topography to extract the
basal shear stress. In turn, this allows an iterative (or other)
solution for the glacier thickness. When the thickness is
calculated at many locations, the glacier volume can be
estimated, but it is dependent entirely on an ill-posed
boundary-value problem, where estimations of the basal
shear stress have been derived from surface parameters. This
is by no means an indictment of the models or of numerical
inversions in general, and it is only an acknowledgement
that the calculation must be non-unique, even when the
solution is entirely reasonable and stable.

Similarly, scaling techniques (e.g. Bahr and others, 1997)
use the surface area (one boundary) to infer the average
thickness (bottom boundary) via a volume/area power-law
relationship, V ¼ cS�, where V is volume, S is area and c
and � are scaling parameters. At first glance, the solution
appears stable and therefore well-posed. However, note that
c, while often described as a constant, is in fact a random
variable. The parameter c has a distribution of possible
values (Bahr, 1997a), and therefore the calculated volume
also has a distribution of values. Thus, the scaled-volume
solution is not unique, and the problem is ill-posed. Of
course, the placement of all the boundary conditions on the
surface of the glacier makes that nearly inevitable; and if a
problem is ill-posed, an analytical scaling solution cannot
make it well-posed. Only with the application of special
filtering, a Bayesian analysis or other regularization tech-
niques (e.g. Bahr and others, 1994; Zhdanov, 2002; Truffer,
2004; Raymond and Gudmundsson, 2009) will the ana-
lytical solution or model give a reasonable (though still non-
unique) approximation to the exact solution. In the case of
volume/area scaling, the distribution of c is routinely
replaced by its mean value (or a value estimated from a
regression), and the resulting volume solution becomes
stable and reasonable, but most certainly not unique.

While the ill-posed nature of the problem might appear to
be an annoying burden, it does have some advantages.

Consider all of the world’s glaciers that have a specified area
within plus or minus some arbitrarily small tolerance. With
great certainty, we know that these glaciers will not all have
the same volume, because they are each on different basal
topography in different local climates, etc. For the specified
glacier area (plus or minus the tolerance), there will be a
distribution of associated glacier volumes. The distribution
may be small and have a well-defined mean; but the volume
cannot, and intuitively should not, be uniquely determined
from the area. In this respect, the ill-posed volume/area
scaling problem reassuringly agrees with our understanding
of actual glaciers.

Similarly, we know that a glacier’s surface does not
reflect every small bump and divot in the basal topography.
The flowing ice ‘averages away’ many of these small-scale
basal features, and a variety of different basal conditions can
be accommodated by essentially identical surface topog-
raphies. Conversely, this means that each observed surface
must correspond to a variety of possible basal topographies,
and a small change at the surface could be due to
substantially different conditions on the bed. This instability
is encompassed nicely by the ill-posed nature of the
inversion problem. The fact that numerical models repro-
duce this intuitive instability is reassuring.

IDENTIFYING REASONABLE (REGULARIZED)
SOLUTIONS
The problem of deriving a glacier’s volume from surface
data will always be ill-posed, but there are three important
mitigating factors that make both scaling and numerical
inversions useful and practical tools. First, ill-posed does
not mean unsolvable. A great deal of progress has been
made by turning ill-posed problems in seismology, geo-
desy, geomagnetism and other geophysical disciplines into
a set of equivalent well-posed problems, typically through a
process called regularization, which places reasonable
bounds on the solution (Zhdanov, 2002). In essence, part
of the solution (or part of the form of the solution) is
guessed or assumed, and the inversion is therefore
constrained and no longer ill-posed. Similar progress has
been made with regularization of glacier inversions (e.g.
Truffer, 2004; Maxwell and others, 2008; Raymond and
Gudmundsson, 2009; Habermann and others, 2012), and
even though these and future improvements will always
be an approximation, ill-posed inversions are best treated
with careful calculation and interpretation rather than
assumed intractability.

As a second mitigating factor, the random errors in
volume will differ for each glacier, and by the law of large
numbers, the sum of many glaciers’ volumes will give a
good estimate of their total volume. Thus, while ill-posed
estimates of single glacier values are invariably highly
uncertain, the average or aggregate value of a sufficiently
large sample of glaciers will be more robust. As shown in
the following sections, the variance in glacier volume
estimates depends strongly on the sample size, and for small
samples (or individual glaciers) can grow exponentially
large, making the total volume estimate much less reliable.
Furthermore, each method for estimating glacier volume
will have additional sources of error that are separate from
the ill-posed calculation (e.g. errors in data, errors from
numerical instabilities and errors in specified parameters
(such as the scaling constant, or flow law creep parameter A
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or sliding law)). The impact of these additional errors on the
variance of the total volume must be evaluated separately
from the ill-posed boundary-value problem. However,
unless special precautions are taken (as described in the
following section), it is the exponentially large variance
from the ill-posed calculation that has the greatest potential
to overwhelm an estimate of total GIC volume. This is one
of the primary points of this paper: extra care must be taken
to ensure that the ill-posed calculation is carefully
controlled or the associated errors may become the
dominant (though all too often ignored) source of volume
error and variance.

As a third mitigating factor, the ill-posed instability is
dependent on the spatial wavelength or resolution of the
solution (e.g. Bahr and others, 1994; Zhdanov, 2002, p. 30–
31; Truffer, 2004; Chandler and others, 2006; Habermann
and others, 2012). In this context we are defining the spatial
wavelength (and related spatial frequency) as the length
scale of variation of whatever surface properties are being
projected downwards in the inversion for distributions at the
bed. For example, if velocity data obtained at the surface
are used to infer velocity at the bed, we might ask what a
change in along-flow speed over half the ice thickness in
the along-flow direction tells us about variations in the
along-flow speed at the bed; in this example, the
wavelength, �, would be H=2, where H is the ice thickness.
More formally, the wavelength, �, is the spatial wavelength
of a Fourier decomposition of the solution and of the surface
observations (which are a part of the solution).

In particular, high-resolution model results will be less
accurate than low-resolution results (where the highest
possible resolution is the discretization or sampling interval,
and the smallest resolvable spatial wavelength is twice the
resolution). For example, a model with 100m gridcells will
have smaller errors than a model interpreted at 10m
intervals. Although perhaps counterintuitive, errors from
neighboring gridcells do not cancel. Instead, the errors only
grow increasingly unstable with finer grids and with
calculations that go further from the surface data towards
the bed. Bahr and others (1994, p. 513–514) use a perturb-
ation solution to show that the errors grow chaotically (in
the mathematical sense) and exponentially large no matter
what type of inversion is used. However, the rate of
exponential growth is smaller for longer wavelengths.
Therefore, at suitably long spatial wavelengths a stable
solution at the bed of the glacier is still possible when
inverting from surface data. The trick is to eliminate the
unstable short frequencies that generate most of the errors.
Eliminating or smoothing high frequencies has been the
strategy of many glacier inversions, and it is another
example of regularization (which assumes something about
the structure of the solution at the bed) (e.g. Truffer, 2004;
Habermann and others, 2012).

In practice, short spatial wavelengths in the thickness
solution can be removed with a low-pass frequency-domain
filter (apply a Fourier transform to the solution and then
truncate high frequencies in the frequency domain). If we
assume smooth basal topography, for example, then the
resulting low-resolution, long-wavelength solution will be
very accurate. In reality, such an assumption of smooth
basal topography may not be realistic for an arbitrary
glacier. Many glaciers have icefalls, overdeepened valleys,
barely submerged nunataks and other high spatial fre-
quency features which can be buried under ice and cannot

be known a priori. If glacier volume is estimated from the
sum of the calculated thickness distribution, then the law of
large numbers ensures that random errors will cancel in the
summation. In other words, the volume and the mean
glacier thickness will be well represented. However, if short
spatial wavelengths are represented in the solution in an
attempt to include high spatial frequency features in the
basal topography (icefalls, etc.), then the errors in the
calculated thickness will grow exponentially larger and the
variance in their sum will become exponentially large (cf.
central limit theorem). If the variance gets too large (as it
will with short wavelengths; see Eqn (1)), then the estimate
of the volume is effectively meaningless.

To avoid filtering explicitly, other numerical techniques
employ differing strategies for regularizing and removing the
unphysical short-wavelength oscillations. For example, an
inversion with Bayesian inference assigns probabilities to
each solution, so the short-wavelength errors become a
possible but improbable solution (Raymond and Gud-
mundsson, 2009). Regardless of the particular technique
(filtering, Bayesian or other), the improbable high-amplitude
short-wavelength errors must be identified, minimized
and/or removed.

Most published inversions already acknowledge the
need for averaging, filters or error suppression of some
kind (e.g. Huss and Farinotti, 2012; McNabb and others,
2012; Clarke and others, 2013), and we expect that these
models will provide reasonable volume estimates with
minimal errors from the ill-posed instabilities. However,
the potential for large ill-posed errors is so significant, we
argue that careful analysis and exposition about ill-posed
errors is essential for accurate GIC volume estimates. For
example, errors in scaled volume grow only linearly with
errors in the scaling parameter, c; but as the next section
shows, this is trivial compared with the huge exponential
growth rates of errors in an ill-posed inversion calculation.
(For a discussion and comparison of growth rates, see
Shaffer, 2010, ch. 3.) Every numerical volume estimate
should discuss the ill-posed errors explicitly and should
explain precisely how these potentially huge errors have
been controlled or eliminated.

When evaluating the ill-posed errors in a numerical
solution of glacier volume, it is natural to ask whether a
volume/area scaling solution provides any significant benefit
(such as stability), or if the greater resolution of a numerical
inversion makes the numerical volume solution preferable
and more accurate. To address this, we do not develop a new
technique for inversions, nor do we derive a new technique
for error suppression or removing short-wavelength errors.
Instead, we assume and use existing theory in the form of
Eqn (1) to discuss glacier volume estimations as an ill-posed
inversion. As the following analysis shows, volume/area
scaling inherently averages over long wavelengths and does
not over-interpret the ill-posed results at shorter wavelengths.
In contrast, numerical inversions with fixed grid spacing can
over-interpret the volume estimation by including exces-
sively short wavelengths, especially on large glaciers.
Nevertheless, both methods of volume estimation are useful
in different contexts; therefore the following section also
details the appropriate wavelengths for filtering numerical
inversions. After filtering, numerical inversions and volume/
area scaling have notable trade-offs between resolution and
errors, but both give roughly equivalent measures of the
glacier volume.
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ERROR ANALYSIS FOR THE ILL-POSED VOLUME
PROBLEM
Although the mathematical details of the following analysis
are extensive, the basic approach is intuitive and simple.
Any errors in a specified (or calculated) stress at the surface
of a glacier will grow exponentially larger when the
resulting stress is estimated at the bed of a glacier (Bahr
and others, 1994). Using scaling relationships all other
glaciological parameters can be related to the stress (Bahr,
1997a). Therefore, small errors in the stress at the surface
will translate to exponentially large errors for any and all
parameters estimated at the bed of a glacier. In particular,
the thickness estimate (equivalently, the estimated position
of the bottom boundary) will have exponentially large
errors. Volume is calculated as an integral or summation
over the thickness, and the summation may cancel the
errors (mean value theorem), but this summation will still
leave an exponentially large variance. The variance can be
so large that the volume calculation is effectively mean-
ingless. The mathematical details show that the calculation
errors are larger at high spatial frequencies and are larger
when the glacier is thicker. Therefore, models that use finely
spaced grids on large glaciers will have tremendous errors
(and an enormous variance in the estimated volume) unless
high-frequency components of the solution are eliminated.
In contrast, volume/area scaling automatically eliminates
these unstable high frequencies, because the inherent
wavelengths of the scaling solution are very long and on
the order of twice the glacier’s length.

Our analysis starts with the previously published
conclusions of Bahr and others (1994), which showed that
deviatoric stress errors from the ill-posed calculation grow
exponentially as

k�b�0ijðk, zbÞk ¼ k�b�
0
ijðk, zsÞk e

k rðnÞH, ð1Þ

where k � � � k is an appropriate norm (e.g. the sup norm), zs
is the surface elevation, zb is the elevation of the bed,
H ¼ zs � zb is the thickness of the ice and k is spatial
frequency in the along-glacier direction, x. The � indicate a
measurement or calculation error, so �b�0ijðk, zsÞ is the
measurement error of a stress at the surface of the glacier,
and �b�0ijðk, zbÞ is the resulting inversion calculation error at
the bed. The hat notation, b, indicates that the function has
been Fourier transformed in the along-glacier direction, x
(but not transformed in the vertical direction, z); in other
words, along-glacier spatial variations in x have been
transformed to the spatial frequency domain, k. Spatial
frequency is related to spatial wavelength by k ¼ 2�=�, so
Eqn (1) indicates that the low-frequency (and long-
wavelength) components of the solution have relatively
small errors while the high-frequency (and short-wave-
length) components of the solution have exponentially
larger errors.

The value of rðnÞ is a constant that depends on Glen’s
constitutive law parameter, n, as

rðnÞ ¼ Re
2 � n � 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1 � n
p

n

 !1=2
2

4

3

5, ð2Þ

where Re½� � �� gives the real component of a complex
number (Bahr and others, 1994). For the typical value of
n ¼ 3, the function gives rðnÞ � 0:6, but regardless of the
exact value, the growth rate is always exponential. Even at

spatial wavelengths of half an ice thickness, the errors at the
bed will be huge with k�b�0ijðk,HÞk=k�b�

0
ijðk, zsÞk ¼ 1881

when n ¼ 3; in other words, for � � H=2 (or equivalently
k � 4�=H), basal errors will exceed surface errors by a
factor of �2000, i.e. by over three orders of magnitude. For
reasonable errors that grow by no more than an order of
magnitude, one ice thickness is the shortest practical
horizontal wavelength at the bed, in which case
k�b�0ijðk,HÞk=k�b�

0
ijðk, zsÞk ¼ 43.

The exponential form of Eqn (1) follows from the stress
equilibrium and strain-rate compatibility equations (Bahr
and others, 1994), and can be derived exactly and without
simplifications or assumptions when n ¼ 1. It is also trivially
derived for the case of perfect plasticity as n!1. For more
general n, Eqn (1) has also been derived with a perturbation
analysis under plane-strain and any one of the following
assumptions: (1) highly compressive and tensile flows or
(2) small surface slopes or (3) glaciers that are decoupled
from the bed with high basal sliding rates and low basal
shear (Bahr and others, 1994). Any one of these assump-
tions is limiting, but they each lead to the same conclusion,
suggesting that Eqn (1) is a generally applicable result. In
fact, Eqn (1) is consistent with virtually all other geophysical
inverse problems that have similar exponential growth rates
for errors and have the same inverse dependence on the
spatial wavelength (Zhdanov, 2002). Therefore, we assume
the exponential growth of errors in Eqn (1) as a reasonable
departure point for our analysis.

In an interesting Monte Carlo inversion, Chandler and
others (2006) have suggested that Eqn (1) should have a
power-law rather than an exponential form. If this is the
case, then the derivations that follow in this paper will be
conservative, and practical solutions at the bed of a glacier
could include some shorter spatial wavelengths than
indicated here. However, although postulated, no analytical
power-law formulation for error growth has been derived,
so we will use the exponential form, which is guaranteed to
give a reasonable and conservative lower bound for the
limiting short wavelengths.

To avoid exponentially large errors from the ill-posed
calculation, the spatial wavelength, � ¼ 2�=k, must be
selected so that the right-hand side of Eqn (1) grows as
either a constant or as an even slower function of the
glacier size. Practically this means keeping the exponent’s
value �1:

krðnÞH ¼
2�rðnÞH

�
� 1: ð3Þ

For n ¼ 3, the constant terms become 2�rðnÞ ¼ 3:77, and
the shortest acceptable wavelength will be approximately
four times the glacier thickness.

For simplicity in some later calculations, we define a
normalized wavelength, �, that allows us to discuss the
spatial wavelength in multiples of the glacier thickness.

� ¼
�

2�rðnÞH
�

�

3:77H
: ð4Þ

This is a fundamental measure of length in the ill-posed
calculation. For example, if a model estimates the stress at
the bed as a function of position, then Eqn (3) implies the
computed basal stress should be filtered so that �� 1. If an
order of magnitude is considered sufficiently larger, then
this suggests filtering all � < 10. Certainly, filtering all
� < 1 is a minimal requirement.
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For �� 1, the exponential in Eqn (1) can be approxi-
mated by its McLaurin series and

k�b�0ijðk, zbÞk ¼ k�b�
0
ijðk, zsÞk e

k rðnÞH

¼ k�b�0ijðk, zsÞk e
1=�

� k�b�0ijðk, zsÞk 1þ 1=�ð Þ:

ð5Þ

Therefore,

� ¼ 1=� ð6Þ

is the fractional (or percentage) increase in the errors
between the surface and the bed. For example, � ¼ 10 will
generate errors at the bed that are 10% larger than at the
surface.

We can compare the fractional increase, �, for two
different inversions by taking their ratio. This gives a relative
increase, or relative error,

� ¼
�1

�2
¼

�2

�1
: ð7Þ

For example, � ¼ 10 would imply that the first inversion
technique has an order-of-magnitude greater percentage
increase in errors than the second technique. In the
following sections we specifically focus on values of �

and � appropriate to (1) volume/area scaling and (2) numer-
ical models with a resolution constrained by a fixed grid
spacing. The two techniques can then be quantitatively
compared with �.

Thickness errors
Stresses (as in Eqn (1)) are difficult to measure directly and
are generally inferred from velocities using Glen’s flow law.
Intuitively, we know that an error in the measured surface
velocity must translate to some magnitude of error in the
calculated thickness and that this, in turn, can affect volume
calculations. For example, if the measured surface velocity
is too large compared with the actual velocity, then the
glacier will appear to be too thick, because there would
need to be more ice to deform and produce the excess
velocity. Likewise, if the measured surface velocity is too
small, then the calculated thickness would appear to be too
thin. To help motivate our more detailed calculations, we
note that the relationships between velocity (and stress) and
thickness are nicely illustrated with the well-known ‘slab on
a slope’ (or ‘laminar flow’) solution, which relates thickness
to velocity for an ice slab of uniform thickness:

u x, zsð Þ � u x, zbð Þ / Hnþ1, ð8Þ

or, equivalently,

H / u x, zsð Þ � u x, zbð Þ½ �
1

1þn ð9Þ

(Paterson, 1994, p. 251). If there is an error in the measured
surface velocity, uðx, zsÞ, then Eqn (9) shows that there will
be a related error in the thickness, H. Moreover, if the basal
velocity has an exponentially large calculation error (Bahr
and others, 1994), then Eqn (9) shows that the thickness will
also have an exponentially large error. The exponent,
1=ð1þ nÞ, reduces the magnitude of this error, but does
not change the exponential form.

Similarly, for shear stress in the ‘slab on a slope’ solution,

�0xzðx, zbÞ ¼ �g�H, ð10Þ

where � is ice density, g is gravity and � is the surface slope of
the glacier. In this case, an exponentially large error in the
calculated basal shear, �0xzðx, zbÞ, is translated linearly to an

exponentially large error in the calculated thickness,H. More
precisely, for an error or perturbation, �, in the basal shear,

�0xzðx, zbÞ þ��0xzðx, zbÞ ¼ �g� Hþ�Hð Þ, ð11Þ

where �H is the error or perturbation in the thickness.
Subtracting Eqn (10) from Eqn (11) and rearranging,

�H ¼ ��0xzðx, zbÞ= �g�ð Þ: ð12Þ

Fourier-transforming to the spatial frequency domain and
substituting Eqn (1),

k�bHk ¼
1
�g�
k�b�0xzðk, zsÞk e2�rðnÞH=�: ð13Þ

In other words, if the basal shear has been calculated from
the surface shear, then the error in the basal shear will be
exponentially large; for a ‘slab on a slope’, this means that
the calculated thickness will also have an exponentially
large error.

To generalize these results, the above relationship
between shear stress and thickness can be made math-
ematically precise without reference to the assumptions
used in a ‘slab on a slope’ solution. In particular, a
dimensional analysis (e.g. Welty and others, 1984; Schmidt
and Housen, 1995) shows that the fundamental relationship
between glacier stress and thickness is linear and mono-
tonically increasing. In particular, for all coordinate direc-
tions, i and j, and for the component of gravity, gj, in the jth
coordinate direction,

�ij ¼ �ij�gjH, ð14Þ

for some dimensionless constant, �ij, which is a glacio-
logical equivalent of other well-known dimensionless par-
ameters in fluid mechanics (e.g. Reynolds or Froude
numbers). Equation (14) is exact, it is an inevitable
consequence of a dimensional analysis and it is inde-
pendent of any assumptions. The constant �ij will vary with
the choice of i and j, will vary with the axes orientations (to
include an angle, as in Eqn (10)) and will vary from glacier to
glacier; but in all cases the linear relationship between stress
and thickness is inviolable. Stretching transformations (e.g.
Logan, 1987) of the fully three-dimensional (3-D) stress
equilibrium, constitutive and force-balance equations also
give the same result (e.g. Bahr and Rundle, 1995, p. 638).
Note that in the context of Eqn (14), �ij refers to a full non-
deviatoric stress, and that all stress components are, to first
order, small deviations from the overburden, �gjH. This first-
order relationship to the overburden is most obvious when
partitioning stresses into lithostatic and non-lithostatic
components (e.g. Van der Veen and Whillans, 1989; Cuffey
and Paterson, 2010, p. 321). The vertically integrated force-
balance equations also show the primarily linear relation-
ship between thickness and stress. (See, e.g., eqns (8.56) and
(8.59) of Cuffey and Paterson, 2010, p. 325.)

In the dimensional context of Eqn (14), �ij and H refer to
characteristic values. The choice of a characteristic value is
determined by the particular problem being solved, though
for any choice of characteristic values, the dimensionless
parameters, �ij, can vary (in the same way that the
dimensionless Reynolds number can vary in fluid mech-
anics). For example, the characteristic thickness could be
the average thickness over the entire glacier, the average
thickness along the center line, the average along the
equilibrium line, or it could be a single value at a particular
location (e.g. the thickness at the intersection of the
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equilibrium line and center line). There is no single correct
answer, but clearly the average thickness over the entire
glacier is an appropriate characteristic thickness for a glacier
volume calculation. Importantly, by the mean value
theorem of calculus, the average thickness will always be
equal to the thickness at a particular location. Therefore,
without loss of generality, the following analysis assumes
that the characteristic thickness is always given by the value
of the thickness at a single location within the glacier.
Likewise, a reasonable characteristic value for stress will be
the average over the bed of the glacier, but this can always
be replaced by the value of the stress at a single location.
Further details of choosing appropriate characteristic values
can be found in many engineering references (e.g. Welty
and others, 1984).

Deviatoric shear stresses are identical to non-deviatoric
shear stresses, and from Eqn (14) with i 6¼ j,

�0 ij ¼ �ij�gjH, ð15Þ

where �0ij is the same characteristic value as �ij. For normal
stresses,

�0 ii ¼ �ii �
1
3
�xx þ �yy þ �zz
� �

: ð16Þ

Substituting Eqn (14) repeatedly,

�0ii ¼ �ii�gjH �
1
3

�xx�gjHþ�yy�gjHþ�zz�gjH
� �

ð17Þ

¼ �gjH �ii �
1
3

�xx þ�yy þ�zz
� �

� �

: ð18Þ

Recall that the �ij are dimensionless parameters and are
constants determined by the particular problem being
solved. Therefore, in general and without assumptions,
deviatoric stresses are linearly related to thickness by

�0ij ¼ �0ijH, ð19Þ

where �0ij ¼ �gj�ij when i 6¼ j, and �0ij ¼ �gj �ii �
1
3 �xxþð

�

�yy þ�zzÞ� when i ¼ j.
If the characteristic thickness and stress are selected as

values at a particular point on the bed (e.g. at the
intersection of the equilibrium line and the center line),
then the form of this general equation is identical to the ‘slab
on a slope’ solution in Eqn (10), and by the same logic,
substituting Eqns (1) and (5) gives

k�bHðkÞk ¼
1

�0ij
k�b�0 ijðk, zsÞkekrðnÞH

¼
1

�0ij
k�b�0 ijðk, zsÞk 1þ 1=�ð Þ:

ð20Þ

Therefore, at the most fundamental level, any errors in the
specified surface stress will be transferred to the calculated
thickness, and the errors in the calculated thickness will be
exponentially larger for bigger glaciers (larger H in the
exponent).

The volume, V, of a glacier is the integral of thickness
over the glacier’s surface area, S. Therefore, by the mean
value theorem, the integral can be replaced by the value of
the thickness, H, below some particular point, ðx, yÞ, on the
surface.

V ¼ SH: ð21Þ

By definition, H is also the average thickness of the glacier

and is the characteristic value. Substituting Eqn (19),

V ¼
S

�0ij
�0 ijðx, y, zbÞ: ð22Þ

In other words, errors in any of the surface area (Eqns (21)
or (22)) or thickness (Eqn (21)) or the stress (Eqn (22)) will
introduce errors in the volume. From Eqns (1) and (20), the
stress and thickness errors can be exponentially large, and
therefore we fully expect that the volume errors in Eqns (21)
and (22) will also be large. After introducing scaling
arguments, a detailed Fourier transform of Eqn (21) will
follow further below, but the motivations behind the
calculation of volume errors are now clear. Using the
above, we can turn to detailed analyses of volume/area
scaling and numerical inversions.

Ill-posed errors from volume/area scaling
Consider the special case where a glacier’s volume is
estimated by scaling with the surface area:

V ¼ cS�, ð23Þ

where � ¼ 1:375 for glaciers and 1.25 for ice caps, and c is
a scaling parameter with mean value 0.034 (Bahr, 1997a;
Bahr and others, 1997). The volume solution cannot be
unique because c has a distribution of values. Therefore,
viewed as an inversion, volume/area scaling is ill-posed.
Nonetheless, it seems obvious that the solution is stable.
Small changes in the surface area will lead to small changes
in the volume. For example, with small surface errors where
�S� S, higher-order terms of �S vanish and

�V � c�S�� 1�S: ð24Þ

In other words, for a fixed surface area, S, the volume error,
�V, scales linearly with the surface error, �S, and the error
is stable. It is not immediately obvious, however, why the
scaling solution should be stable when most other inver-
sions are unstable. This section shows that volume/area
scaling happens to use sufficiently long wavelengths that the
ill-posed inversion errors are vanishingly small. The ill-
posed errors exist in a scaling solution, but they become
irrelevant.

Volume/area scaling is only one of a large suite of scaling
relationships that follow from a dimensional analysis of the
relevant continuum mechanical variables. Two other ex-
amples are the well-known response time relationships,
t / z=uz and t / x=ux. Another example is the fundamental
dimensional relationship between the velocity and the length
scale ux / A�ngxnznþ1 (cf. ‘slab on a slope’, Eqn (8)). Other
dimensional relationships exist for all the fundamental
continuum parameters (stress, velocity, thickness, length,
time, etc.). These dimensional relationships can be general-
ized as power laws (Schmidt and Housen, 1995), and in
particular, Bahr (1997a) has shown that the surface area, S,
can be related to any other glaciological continuum
parameter, P, by a power-law scaling relationship of the form

S ¼ cpP�p ð25Þ

for some scaling parameter cp and exponent �p. Because all
of these scaling relationships are derived from a dimensional
analysis (and equivalently from stretching transformations of
the continuum equations), the suite of scaling relationships
is valid as a complete set. In other words, we cannot accept
some of the scaling relationships and reject others. Some of
these relationships may be very difficult to verify with data
(e.g. those that involve a difficult-to-measure stress), and
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others may be somewhat easier to verify with data (e.g.
volume/area scaling, for which limited measurements are
available). However, because the scaling relationships exist
as a set, the verification of one relationship implies the
existence of all the others.

This is particularly relevant when estimating volume from
area, because we can convert volume/area scaling (verified
with data) to an equivalent volume/stress relationship. In
essence, if volume scales with area (Eqn (23)), and area
scales with stress (Eqn (25)), then volume must scale with
stress. In particular, from Eqn (25)

S ¼ c��0ij
�� , ð26Þ

where substitutions of Eqns (19) and (23) show
�� ¼ 1=ð� � 1Þ and c� ¼ ðc=�0ijÞ

�� . Combining with volume/
area scaling (Eqn (23))

V ¼ cv�0ij
�v , ð27Þ

where cv ¼ c c�� and �v ¼ � �� ¼ �=ð� � 1Þ; note that the
characteristic value of the stress in Eqn (27) must be positive
to avoid non-physical complex-valued volumes. It follows
that errors in stress will generate errors in the calculated
volume

V þ�V ¼ cv �0ij þ��0ij

� ��v
: ð28Þ

For small errors (which might still be growing exponen-
tially), ��0ij � �0ij and higher-order terms of ��0ij become
negligibly small, so that

�V � cv�v�0ij
�v � 1��0ij: ð29Þ

Similarly,

�S � c����0ij
��� 1��0ij: ð30Þ

From Eqns (1) and (20), we know that the magnitude of
the errors in the stress will depend on the wavelengths under
consideration. Each of Eqns (24–30) are scaling relationships
that use characteristic quantities, so the applicable wave-
length is the characteristic length. Because all of the power-
law scaling relationships exist as a set, the characteristic
value used in one scaling relationship must be the same
characteristic value used in all of the other scaling relation-
ships. For example, when estimating a glacier’s volume, the
same characteristic length that applies to volume/area
scaling must also apply to area/stress scaling, as well as to
volume/stress scaling. Any differences would lead to
contradictions in Eqn (25) (such as different values of the
glacier surface area, S, when calculated from different
parameters, P).

The necessity of a common length scale is particularly
apparent when considering small perturbations in P. From
Eqn (25) with �P� P,

�S ¼ cp�pP�p� 1�P: ð31Þ

Multiplying both sides by P and rearranging

�S
S
/

�P
P
: ð32Þ

Repeatedly selecting P as the length, L, volume, V, and
stress, �0ij (as well as any other continuum parameter),

�S
S
/

�L
L
/

�V
V
/

��0ij

�0ij
/

�P
P
: ð33Þ

In other words, each parameter and its error is related to the
same length scale, L, by Eqn (33).

It is possible to have multiple length scales in the same
analysis (e.g. a glacier width,W, and a glacier thickness, H),
but it is not possible to have the same (single) length scale, L,
with two different values in the same problem. For example,
we cannot assign 1 km to the glacier’s total length in the
direction of flow and then in a different equation in the same
analysis assign 10 km to the length in the direction of flow.
Instead, the length scale, L, must be consistent across all
equations. For practical examples, see the treatment of fluid
mechanical problems that use both Reynolds and Froude
numbers (or other dimensionless numbers) in the same
problem (e.g. Welty and others, 1984).

Intuitively, in a glacier volume calculation, the appropri-
ate characteristic length scale is the glacier length in the
direction of flow. Rigorously, the characteristic length, L, for
volume/area and volume/stress scaling can be derived from
the empirically validated area/length relationship

S ¼ bLqþ1, ð34Þ

where b � 1 is a scaling constant and q ¼ 0:6 for glaciers and
q ¼ 1 for ice caps (Bahr, 1997b) (cf. Eqn (25)). Solving for L
gives the characteristic glacier length associated with area/
length scaling, and therefore, as discussed above, this is the
length scale associated with volume/area and volume/stress
scaling. Given the length scale, L, the associated wavelength
is � ¼ 2L (the theoretically minimum resolvable wavelength
is given by twice the shortest distance that is assigned a value
by a model, and the volume scaling solution does not assign
or evaluate distances smaller than L). From Eqn (34),

� ¼ 2L ¼ 2 S=bð Þ
1
qþ1 : ð35Þ

We can now calculate the ill-posed inversion stress errors
at the particular wavelength used by volume/area scaling.
Substituting Eqn (35) into Eqn (1) and using k ¼ 2�=�,

k�b�0ijðzbÞk ¼ k�b�0 ijðzsÞk e�rðnÞH=L

¼ k�b�0 ijðzsÞk e�rðnÞHb
1
qþ1 S

� 1
qþ1
:

ð36Þ

We can further reduce this equation by replacing the
thickness, H, with a combination of Eqns (21) and (23):

H ¼ V=S ¼ cS�� 1 ð37Þ

(called thickness/area scaling; cf. Eqn (25)). Substituting gives

k�b�0ijðzbÞk ¼ k�b�0ijðzsÞk emS
�

, ð38Þ

where

� ¼ � � 1 �
1

qþ 1
¼ � 0:25 ð39Þ

for both glaciers and ice caps (the values for � and q are
given after Eqns (23) and (34)), and

m ¼ �rðnÞcb
1
qþ1 ¼ 0:064 ð40Þ

for n ¼ 3, rð3Þ ¼ 0:6, c ¼ 0:034 and b ¼ 1. From Eqn (5),
the fundamental (normalized) wavelength associated with
scaling is

�s ¼ S� �=m � 16S0:25, ð41Þ

and from Eqn (6), the fractional (or percentage) error
associated with scaling is

�s ¼ mS� � 0:064S� 0:25: ð42Þ
The parameters b and c have a distribution of values

(Bahr, 1997a) and can vary significantly from glacier to
glacier. However, even with order-of-magnitude estimates
of b and c, the parameter m remains small. Furthermore, the
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term S� 0:25 rapidly approaches zero for glaciers larger than
1 km2. Therefore, for any value of S > 1, the wavelength
�s � 1 and

emS
�

¼ e1=�s � 1: ð43Þ

In other words, for all but the smallest glaciers, there is no
significant dependence on glacier size, and

k�b�0ijðzbÞk � k�b�0 ijðzsÞk: ð44Þ

At the wavelengths relevant to scaling, stress errors do not
increase significantly during an inversion calculation and
�s ! 0. Nevertheless, while close to zero, �s is not exactly
zero, as shown in Eqn (42). This will be relevant below,
when we use � to compare the scaling solution with the
numerical inversion (Eqn (7)).

By restricting our attention to small perturbations, we can
show explicitly the relationship between stress errors in
Eqn (38) and volume/area scaling errors in Eqn (24).
Combine Eqn (38) with the Fourier-transformed errors
calculated from volume/stress scaling in Eqn (29):

k�bVk ¼ cv�v�0ijðzbÞ
�v � 1k�b�0 ijðzsÞkemS

�

: ð45Þ

Combine Eqn (45) with Fourier-transformed errors estimated
from area/stress scaling in Eqn (30).

k�bVk ¼
cv�v�0ijðzbÞ

�v � 1

c����0ijðzbÞ
�� � 1
k�bSk emS

�

: ð46Þ

Remove the stresses with one more application of volume/
stress and area/stress scaling.

k�bVk ¼
�vV=�0ij
��S=�0ij

k�bSk emS
�

: ð47Þ

Substituting Eqn (37),

k�bVk ¼ c�S�� 1k�bSk emS
�

, ð48Þ

where � ¼ �v=��, as noted after Eqn (27). Again, for glaciers
larger than 1 km2, the exponential in Eqn (48) rapidly
approaches 1, and

k�bVk � c�S�� 1 k�bSk: ð49Þ
Remarkably, this is a Fourier-transformed restatement of

the errors in volume/area scaling (Eqn (24)). In other words,
the general stress error relationship in Eqn (1) reduces to the
errors we expect from volume/area scaling (Eqn (49)). At
wavelengths relevant to scaling, the stress errors do not
increase significantly with the calculation depth, and the
volume errors do not increase exponentially with the
thickness of the glacier. At the long wavelengths inherently
used by volume/area and volume/stress scaling, there is no
exponential growth of the errors between the surface and the
bed of the glacier. The short and problematic wavelengths
have been automatically excluded by volume/area scaling.

In some respects, this conclusion is obvious. Volume/
area scaling applies to the longest possible wavelengths that
could be assigned to a glacier: those wavelengths that are
defined by distances encompassing the entire surface. If any
volume calculation should be stable, it should be the
longest-wavelength solution. However, the rigorous deriva-
tions above illustrate that scaling is not special or exempt
from the ill-posed errors that apply to all inversions.
Instead, those errors are just vanishingly small for glaciers
larger than 1 km2, and no additional averaging or filtering is
necessary to control the ill-posed instability when using
volume/area scaling.

Ill-posed errors from numerical inversions
Every model is different, and it is difficult to generalize how
ill-posed errors will propagate in an arbitrary and unspeci-
fied numerical inversion. Nevertheless, certain features are
common to most or all models. For example, volumes are
inferred as a summation of the glacier’s thickness at many
locations. In turn, the thickness is established by calculating
stress (and velocity) fields within the glacier. The models
may use measurements of the velocities and stresses at the
surface, or the models may calculate the velocities and
stresses at the surface. Either way, errors in the measured or
calculated surface stresses will lead to errors in the thickness
and volume, as described above. If the short-wavelength
components of the solution are not suppressed, then the
resulting thickness and volume errors could be exponen-
tially huge.

Consider for example, a hypothetical numerical model
with a grid spacing of dx along the surface of a glacier. The
wavelength is � ¼ 2dx, and from Eqn (1)

k�b�0ijðk, zbÞk ¼ k�b�
0
ijðk, zsÞk e

�rðnÞH=dx: ð50Þ

If dx is fixed, then the errors in Eqn (50) will grow
exponentially with glacier thickness, H.

The appropriate horizontal grid spacing, dx, will depend
on the size of the glacier. The exponent in Eqn (50) must be
kept small, and the exponent depends on the thickness of
the glacier:

dx� �rðnÞH: ð51Þ

For a very small glacier of 1 km2, the average thickness will
be 34m (Eqn (37)), and the grid spacing should be
dx� 64m. For an exceptionally large glacier of
10 000 km2, the average thickness will be 1075m, and the
grid spacing should be dx� 2026m.

The actual choice of grid spacing, dx, will depend on the
acceptable level of errors, but ‘much greater than’ is typically
taken to be an order of magnitude. Therefore,

dx � �m�rðnÞH ¼ 18:8H, ð52Þ

where�m ¼ 10 is selected for the typical order-of-magnitude
estimate (see discussion below Eqn (4)). Therefore, the
appropriate horizontal grid spacing, dx, should be�20 times
the ice thickness. That value is consistent with the findings of
Kamb and Echelmeyer (1986), who note that basal shear
should be averaged over 10–20 times the local ice thickness.

The implications are staggering when placed in the
context of a glacier’s expected length. For a very small
glacier of 1 km2, the approximate glacier length (from area/
length scaling in Eqn (34)) will be 1000m, and the horizontal
grid spacing should be dx � 640m. That is a grid spacing of
more than half the expected length of the glacier. For an
exceptionally large glacier of 10 000 km2, the approximate
glacier length will be 316 km, and the grid spacing should be
dx � 15:6 km. That is �5% of the total length. In other
words, a numerical inversion will barely resolve the world’s
smallest glaciers, and it can only fit 10–20 gridpoints inside
the world’s largest glaciers. Table 1 gives the number of
modeling gridpoints for various glacier sizes.

Grid sizes that are too small could lead to significant
volume errors. To better understand the potential volume
errors in a numerical inversion, we make several reasonable
approximations and assumptions in the following deriva-
tions. First, we assume small errors, with �S� S and
�H� H; these errors could still be growing exponentially.
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Second, we reasonably assume that the surface area, S, is
roughly constant but the error, �S, is a variable. Third, we
assume that �ij is order unity; this non-dimensional
parameter comes from the thickness/stress relationship
(Eqn (14)), and as discussed elsewhere, non-dimensional
numbers are expected to have order unity (e.g. Schmidt and
Housen, 1995). From the ‘slab on a slope’ solution
(Eqn (10)), it is reasonable that �ij � sin �, where � is the
slope of a glacier, and �ij will therefore fall between 0 and
1. The relationship between �ij and �0ij implies that �0ij will
have order �g sin �. Fourth, we assume that the stress errors,
k�b�0ijðk, zsÞk, at the surface are roughly the same for all
glaciers. In other words, whatever measurement or calcula-
tion precision is appropriate for one glacier will also apply
to all other glaciers.

Now recall that V ¼ SH, where H is the characteristic
thickness (Eqn (21)). Therefore,

V þ�V ¼ Sþ�Sð Þ Hþ�Hð Þ

¼ SHþ S�HþH�Sþ�S�H:
ð53Þ

The last term is negligible for small errors (see assumptions),
so

�V � S�HþH�S

¼ S�HþH
�V
c�S�� 1

� �

¼ S�HþHS
�V
�V

� �

¼ S�Hþ
�V
�

� �

,

ð54Þ

where the last term of each line follows from an application
of volume/area scaling errors (Eqn (24)) and thickness/area
scaling (Eqn (37)). Solving for �V,

�V ¼ S
�

� � 1

� �

�H

¼ S�v�H,
ð55Þ

where �v ¼ �=ð� � 1Þ is the volume/stress scaling exponent

(Eqn (27)). Fourier-transforming the errors while holding the
surface area constant,

�bV ¼ S�v�bH: ð56Þ

The errors in the thickness are already known from Eqn (20),
so substituting gives

k�bVk ¼ �v
S

�0ij

 !

k�b�0ijðk, zsÞk ekrðnÞH: ð57Þ

Note that S=�0ij ¼ cv�
0
ij
�� 1, so this is a restatement of the

volume errors derived from our scaling analysis in Eqn (45);
but in this case, the Fourier-transformed volume errors have
been derived from V ¼ SH, rather than from volume/stress
scaling. The consistency bolsters our arguments.

We can now compare the relative volume errors for two
different glaciers with the ratio k�cV1k=k�cV2k. The surface
stress errors, k�b�0ijðk, zsÞk, are unknown, but we assume
that they are similar for all glaciers (as discussed above).
Therefore, from Eqns (50) and (57), and for a glacier with
surface area S1 and slope �1, the volume error will be

k�cV1k ¼ �v
S1
�0ij1
k�b�0 ijðk, zsÞk e�rðnÞcS1

�� 1=dx, ð58Þ

where thickness is approximated by Eqn (37). Note that the
parameter �0ij1 is different for every glacier, but is expected to
have order �g sin �1 (see discussion of assumptions above).

With a second glacier of area S2 and slope �2, we can
calculate the relative volume errors as

k�cV1k

k�cV2k
¼

S1�0ij2

S2�0ij1

 !

e�, ð59Þ

where

� ¼ �rðnÞ c S�� 11 � S�� 12

� �
=dx: ð60Þ

We assume that the both glaciers have similar dimensionless
parameters, �0ij, so that �0ij2=�0ij1 � �2=�1 � 1. This is
particularly likely if the glaciers have similar slopes (see
discussion of assumptions above), but small differences in
typical slopes (1–4°) will have little effect on the order-of-
magnitude results discussed below. Therefore,

k�cV1k

k�cV2k
�
S1
S2

e�: ð61Þ

As a case example, let S1 � 1000 km2 and S2 � 1 km2. For
S1 � S2, the ratio ðS2=S1Þ�� 1 approaches zero, and

� � �rðnÞc=dxð ÞS�� 11

� 853=dx
: ð62Þ

Now consider several different grid spacings. (1) For a
horizontal grid spacing dx ¼ 1000m, the relative volume
errors will be k�cV1k=k�cV2k � 2347. In other words, we
expect that the largest glaciers will have volume errors on the
order of 1000 times greater than the errors for a small glacier.
(2) For a finer grid spacing of dx ¼ 100m, we find
k�cV1k=k�cV2k � 5� 106. Volume errors for the large glacier
will be on the order of a million times greater than the small
glacier. (3) If we were tempted to use an even finer-resolution
model with dx ¼ 10m, then the relative error becomes a
ludicrously large, k�cV1k=k�cV2k � 1� 1040. It is clear that
at all but the largest grid sizes, the ill-posed volume errors
will completely swamp any volume calculation.

Table 1. The maximum number of horizontal gridpoints that can be
placed within a glacier with the specified surface area (for
�m ¼ 10). Any additional gridpoints would include unstable high
frequencies from ill-posed errors. The number of gridpoints is
rounded down to the nearest integer and roughly doubles for each
order-of-magnitude increase in glacier area. Small glaciers are
barely resolved by the necessary grid spacing (only one gridpoint
within the glacier), while even the world’s largest glaciers
have very few gridpoints. The length, L ¼ S0:625, and thickness,
H ¼ 0:034S0:375, are estimated from scaling arguments (Eqns (34)
and (37)). The grid spacing, dx ¼ 1:88�H ¼ 18:8H, is estimated
from Eqn (52). The number of gridpoints is bL=dxc

Area Length Thickness Grid spacing Number of

gridpoints

km2 km km km

1 1.00 0.034 0.6 1

10 4.21 0.081 1.5 2

100 17.78 0.191 3.6 4

1000 74.99 0.453 8.5 8

10 000 316.23 1.075 15.6 15
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As another illustration, suppose that for any selected grid
spacing the numerical inversion correctly calculates the
volume of a very small, 1 km2, glacier to within 10%. The
volume of this small glacier is V2 ¼ c S2� ¼ 0:034 km3, and
�V2 in Eqn (61) is �0.0034 km3. In this scenario, we can
estimate the volume errors for the larger, 1000 km2, glacier
for any particular grid size. (1) If dx ¼ 1000m, the volume
errors for the larger glacier will be �8 km3. That is �2% of
the expected glacier volume of 453 km3. (2) If dx ¼ 100m,
the volume errors will be �17219 km3. That is �38 times
larger than the expected glacier volume. Such a calculation
would be useless. (3) If we naively select dx ¼ 10m, then
the volume errors will be on the order of an absurdly large
1� 1037 km3. No reasonable volume estimate can ever be
made with 100m or finer horizontal grid resolution, unless
the high-frequency components of the solution are filtered.

Several assumptions have gone into this rough approx-
imation of the volume errors, but clearly the inversion errors
will be very significant (and even outrageous) if they are not
carefully controlled, particularly for large glaciers modeled
with fine grids that contain short wavelengths. However, in
defense of all numerical inversions, we do not expect most
models to generate ill-posed errors nearly so large. Most
models use averaging schemes to eliminate potential
instabilities. For example, Huss and Farinotti (2012) average
stresses over 10–20 ice thicknesses during each iteration,
and they indicate that the final ice-thickness distribution is
smoothed by an unspecified amount. Averaging and
smoothing will act as low-pass filters, and their length scale
of 10H–20H is consistent with both our findings and those of
Kamb and Echelmeyer (1986). However, the precise effect of
averaging and smoothing is difficult to quantify, while low-
pass filtering or Bayesian statistics (Raymond and Gud-
mundsson, 2009) or other well-reasoned error suppression
(e.g. Zhdanov, 2002; Maxwell and others, 2008) should give
more defensible and precise results. At the least, the effects of
averaging should be explored and explained in detail for the
relevant parameters, such as thickness and volume. This is
unlikely to change any model’s results, but it will help assure
that the potentially large and dominant errors from the ill-
posed calculation have been properly controlled.

Regardless of the technique used to control the ill-posed
errors, modelers should carefully question the seemingly
reasonable (and intuitive) belief that a finer-resolution model
will always give more information about a glacier’s basal
conditions. For an ill-posed inversion with no data about
basal or englacial conditions, that simply is not the case. The
ill-posed errors will overwhelm any calculation.

A COMPARISON OF NUMERICAL INVERSIONS
AND SCALING
For the moment, consider only ill-posed errors, and assume
that all other sources of error are negligible (errors from data,
unknown parameters, numerical schemes, etc.). With these
assumptions in mind, numerical models will have a higher
resolution than scaling. The wavelength of a scaling
calculation increases with the area of a glacier as
�s ¼ 2S0:625 (Eqn (35)), while the wavelength of a numerical
calculation increases as �m ¼ �m 2�rðnÞ c S0:375 with
�m � 10 (Eqns (37) and (52)). Therefore, for all glaciers
>1 km2, the shortest appropriate wavelength of a numerical
model will be smaller than the wavelength of a scaling

solution. In other words, a numerical model can produce a
higher-resolution image of the bed, even after short-
wavelength components of the solution have been elimi-
nated to minimize the ill-posed errors.

In particular, by combining the above relationships
(Eqns (35), (37) and (52)), the modeling and scaling
wavelengths can be compared explicitly:

�m ¼ �m2�rðnÞc
�s

2

� � �� 1ð Þ qþ1ð Þ

, ð63Þ

where �m � 10 (see discussion below Eqn (52)). For param-
eters appropriate to a glacier �m / �s0:6 and for parameters
appropriate to an ice cap �m / �s

0:5. Therefore, roughly
speaking, the scaling wavelengths will be quadratically
larger than the modeling wavelengths. For all but the very
smallest glaciers (�s < 1 km), the numerical modeling solu-
tion will have a greater resolution than the scaling solution
because �m < �s. For most glaciers, the numerical modeling
wavelengths will be one to two orders of magnitude smaller
than the scaling wavelengths.

However, greater model resolution (when compared with
scaling) does not translate to greater accuracy and precision.
The shortest wavelength of a numerical model, �m, has been
selected to minimize the magnitude of the ill-posed errors
(see previous section and the selection of �m), but it does
not actually eliminate the ill-posed errors, that will still grow
as the exponential, e2�rðnÞH=�m¼ e1=�m� 1þ 1=�m ¼ 1þ �m.
In other words, for �m ¼ 10, the ill-posed errors at the bed
of a glacier will be �m � 10% larger than the measurement
errors at the surface.

For many modeling applications �m ¼ 10% will be
adequate. However, the exponential errors in a scaling
calculation grow as �s ¼ 0:064 S� 0:25 (Eqn (42)). For a
1000 km2 glacier, the scaling solution has errors that (to an
order of magnitude) are only �s ¼ 1%. Therefore, the relative
error is � ¼ �m=�s ¼ 10 (Eqn (7)), and scaling is an order of
magnitude more accurate than modeling. Even if the
modeling errors are small, for some applications the order
of magnitude improvement with scaling could be significant.

We could instead choose to filter the numerical model
solutions at even longer spatial wavelengths. This will
further reduce the model’s ill-posed errors. For example,
increasing �m by another order of magnitude (by choosing
�m ¼ 100 rather than �m ¼ 10) will make the model’s
resolution comparable to the scaling resolution (similar
wavelengths). As reasonably expected, when the scaling and
model resolutions are comparable, then the ill-posed errors
are also comparable (and �m � �s). However, choosing
�m ¼ 100 increases the grid spacing by a factor of 10 in
Table 1, and even the world’s largest glaciers would be
barely resolved by the numerical model.

There will always be a trade-off between resolution and
errors. For a 1000 km2 glacier, when �m ¼ 10, then � ¼ �m=
�s ¼ 10. If �m ¼ 100, then � ¼ 1. If �m ¼ 1000, then � ¼ 0:1.
In other words, �m and � have an inverse relationship. If the
resolution of the model increases (i.e. the grid becomes finer)
by an order of magnitude, then the relative accuracy of the
modeling decreases by an order of magnitude (in comparison
with scaling). Neither the scaling nor the numerical inversion
have an inherent advantage, and the choice of a scaling
solution or a numerical modeling solution will depend on the
application. Figure 1 shows the trade-off between numerical
errors and resolution when compared with scaling.
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While the purpose of this paper is an analysis of ill-posed
errors, it is worth emphasizing that other sources of error
could have a significant impact on both the scaling estimate
of a glacier’s volume and the numerical estimate of a
glacier’s volume. Numerical inversion models can have
errors due to the surface data (area, slope, etc.), errors due to
uncertain parameters (e.g. Glen’s flow law parameter,
sliding law parameters, shape factors), errors due to the
numerical scheme (round-off precision, stability, etc.) and
errors due to any simplifications of the continuum physics.
Scaling is derived from the full 3-D continuum mechanics
and has only three sources of error, the parameter, c, the
exponent, �, and the area data, S, (technically, � is fixed by
the physics and should not be considered a significant
source of error; Bahr and others, 1997). Without a detailed
analysis of a particular numerical model, it is difficult to
quantitatively compare the impact of these other sources of
errors. However, it is clear that scaling will have fewer
potential sources of error than modeling; this will make an
assessment of the volume/area scaling errors significantly
simpler. However, while numerical modeling has many
more potential sources of error, a numerical model also
retains significantly greater flexibility, such as the ability
(with �) to fine-tune the resolution versus the magnitude of
the errors.

AGGREGATE ERRORS
Volume as a sum of thickness
Most numerical models calculate a glacier’s volume as the
sum of the thickness distribution. Each value of the thickness

has an associated error. Assuming that the model errors are
random and unbiased, the central limit theorem suggests
that the sum of the modeled thicknesses will be normally
distributed with a well-defined mean and variance. With a
well-defined mean, we expect that the thickness errors will
sum to zero. However, when the modeled grid size is too
small, the exponential error growth implies that the variance
will become exponentially large. In other words, the
standard deviation will be so large that the estimate of the
volume may become useless, particularly for large glaciers.

However, it is not clear if the ill-posed calculation
instability is either random or unbiased. All we know from
the above derivations is that errors in the surface boundary
conditions are growing exponentially with both the
frequency and the thickness of a glacier. Systematic surface
errors could lead to exponentially large systematic errors at
the bed. Therefore, the sum of the thickness errors may not
necessarily approach zero, and both the variance and the
mean could potentially diverge. Regardless, we can state
categorically that the variance of the volume will diverge if
the short wavelengths are not eliminated.

Total volume of all glaciers
For any analytical or numerical technique that does not
control the ill-posed instability, the errors will grow
exponentially with the size of the glacier, as indicated by
the role of H in Eqns (1), (20) and (57). This is mitigated
somewhat when calculating the total worldwide GIC
volume, because with enough glaciers, the sum of many
random errors will tend toward zero. However, glaciers are
not uniformly distributed across size classes (Bahr and
Radić, 2012). When summing the many glaciers in smaller
size bins, the averaging of random errors may effectively
control the aggregate value. However, there are very few
glaciers in the largest bins, and their errors will be
exponentially larger than the errors of the smaller glacier
size classes (e.g. Eqns (1), (20) and (57)). The sum of these
very few large glaciers may contain a sizable fraction of the
total GIC volume (Bahr and Radić, 2012), but the law of
large numbers will not apply, and their contribution to the
total GIC volume error will be large. Therefore, if the ill-
posed instability is not carefully controlled, the total GIC
volume will have extremely large variances dominated by
the exponential errors of the few largest glaciers.

CONCLUSIONS
Errors from the ill-posed boundary-value calculation are by
far the most significant source of error in glacier volume
estimates derived from surface observations. Other signifi-
cant sources of error exist, but unless proper spatial filtering,
or another equivalent error suppression technique, is
applied, the ill-posed calculation errors can grow exponen-
tially and quickly swamp all other sources of error. Before
considering any other source of error (from data, from model
parameters or from numerical instabilities), the ill-posed
errors must be controlled by filtering all short wavelengths.
We recommend removing all horizontal wavelengths less
than �40 times a glacier’s thickness, or equivalently
specifying a horizontal grid spacing greater than or equal
to �20 times the thickness (cf. Kamb and Echelmeyer,
1986). Although many published volume calculations
discuss sources of errors due to data and model parameters,
the ill-posed errors are rarely, if ever, acknowledged beyond

Fig. 1. Wavelength versus relative error. �m is the smallest
wavelength used by a numerical model, and � is the relative error
between scaling and the model for glaciers of various sizes (km2).
Higher values of � indicate greater modeling errors relative to
scaling errors. For example, �m ¼ 10 is a typical value that keeps
ill-posed errors small and is equivalent to filtering all wavelengths
<40 times the thickness (Eqn (4)). In that case, for a 1000 km2

glacier, � � 10, implying that scaling errors, �s, are an order of
magnitude smaller than the modeling errors, �m (see Eqn (7)). Note
that values of �m � 10 are unlikely, because this will lead to
excessively large model grid spaces (Table 1). At �m ¼ 100, for
example, the model will not be able to resolve any glaciers except
for a few of the world’s largest (in Table 1 multiply the grid spacing
by a factor of 10). Therefore, the plot indicates that scaling has
smaller ill-posed errors than numerical modeling (� > 1) for most
plausible scenarios.
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a cursory nod to numerical averaging over long spatial
wavelengths. Instead, a detailed analysis of potential ill-
posed errors should be the first and primary consideration in
any glacier volume estimate.

Volume/area scaling intrinsically eliminates ill-posed
errors by automatically filtering all wavelengths smaller
than twice the glacier length. This is the longest wavelength
solution that can still resolve a glacier, and as discussed, the
longest possible wavelength solution will be the most stable.
Numerical inversions can also filter appropriate wave-
lengths (or employ an equivalent technique that eliminates
non-physical short-wavelength components of the solution)
and are an important alternative to power-law scaling
methods. Both approaches have advantages. Scaling typic-
ally has smaller ill-posed errors, but a numerical inversion
will typically have greater resolution. Power-law scaling has
fewer free parameters, but numerical inversions can give
both the volume and additional information, such as
velocities and stresses inside a glacier.

This paper makes no analysis of errors caused by the
choice of numerical schemes, by the choice of numerical
model parameters or by the choice of power-law scaling
parameters. These errors must be evaluated separately for
each model and scaling application. However, if all other
sources of error are equal, then neither volume/area scaling
nor numerical modeling has an inherent advantage in
resolution, accuracy or precision when estimating a single
glacier’s volume or the world’s total GIC volume. The
accuracy, precision and resolution of any technique is
limited by the ill-posed inversion.
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