Decadal Modulation of ENSO and the Linkage to Tropical Pacific Decadal Variability

Yuko M. Okumura
University of Texas at Austin Institute for Geophysics (UTIG)

With Tianyi Sun (PhD student)

Decadal Modulation of ENSO

What are the fundamental mechanisms of decadal ENSO modulations?

- Does the ENSO modulate with tropical Pacific decadal variability (TPDV)?
 - Do the ENSO properties other than the amplitude modulate?
 - Are the modulations of El Niño and La Nina symmetric?
 - What causes TPDV in the first place?
Community Climate System Model Version 4 (CCSM4)

CCSM4
1300-yr PI Control Simulation

- Ocean, atmosphere, land & sea ice models
- 1° resolution
- Preindustrial GHGs
- Variability = Natural

El Niño
La Niña

Niño-3.4 Index (Yr 900-1100)
Tropical Pacific Decadal Variability (TPDV)

EOF analysis of tropical Pacific SST (>10yr) → Global regressions on PCs

CCSM4 1300-yr run

TPDV1 (47%)

TPDV2 (24%)

Frequency & duration of El Niño

ENSO amplitude & asymmetry

Slab Ocean 500-yr run (No ENSO)

TPDV1 (38%)

TPDV2 (18%)

Contours: SLP (0.1 hPa), Precipitation (0.2 mm/day, WET/DRY)

ENSO
TPDV1 – Frequency and Duration of El Niño

Dec Niño-3.4 SST

> +1σ → El Niño
< −1σ → La Niña
(σ = 1.27°C)

Niño-3.4 Index

TPDV1 > 0

El Niño

TPDV1 < 0

La Niña

130

126

4

81

46

35

63

60

3

99

32

67
Role of Interbasin SST Gradient in El Niño Modulation

Relative warmth of the tropical Pacific
↓
Westerly wind anomalies in W Pacific
↓
Deepening of thermocline in E Pacific
↓
More frequent & persistent El Niño

TPDV1

Mar-May Eq. Pacific Thermocline Depth (σ)

TPDV1 > 0

TPDV1 < 0

Jan-Mar ∇SSTA* = Pacific − Indian/Atlantic (σ)

Dec Niño3.4 (σ)

r(x,y)=0.8

* Regression on Dec(-1) Nino-3.4 index removed
TPDV2 – ENSO Amplitude and Asymmetry

- **TPDV2 > 0**
 - Warmer E Pacific
 - Southward shift of ITCZ
 - Eastward shift of El Niño anomalies
 - Stronger & shorter El Niño
 - Stronger & longer La Niña
 - Stronger ENSO Asymmetry (pattern & duration)

- **TPDV2 < 0**

- **Difference x 2**

La Niña

El Niño

Surface Winds (m/s), Precipitation (0.2 mm/day, WET/DRY)*

ETS (°C)
ENSO modulates with the two leading modes of TPDV.

- Various properties of ENSO modulate.
 (Amplitude, frequency, duration and El Nino-La Nina asymmetry)

- Modulations of El Nino and La Nina are asymmetric.
 (El Nino appears more sensitive to TPDV.)

- What causes TPDV in the first place?
Role of Stochastic Atmospheric Forcing from the S Pacific

Slab Ocean
500-yr run
(No ENSO)

TPDV1 (38%)

TPDV2 (18%)

Pacific-South American (PSA)

PSA2

CAM4
300-yr run
(No SST Variability)

S Pacific SLP EOF1 (32%)

S Pacific SLP EOF2 (21%)

Surface heat flux
(W/m²)

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0

Contours: Sea Level Pressure (1 hPa)
Hypothesis

Stochastic Variability of PSA & PSA2

TPDV

ENSO

CCSM4

Atmosphere

Ocean

PSA & PSA2 heat flux anomalies from CAM4

Amplitude of heat flux anomalies is adjusted for decadal variability and kept constant in time.

100 yr x 3 members for each of PSA and PSA2 forcing
Mean State and ENSO Changes in the **PSA** Experiments

PSA Forcing

TPDV1

Slab Ocean PSA Experiment (100 yr x 1)

El Niño Frequency

La Niña Frequency

PDF (%)

- SST (°C)
- SLP (0.1 hPa), Precipitation (0.2 mm/day, WET/DRY)

of Events / 100 yrs

- Control

#1, #2, #3
Mean State and ENSO Changes in the PSA2 Experiments

PSA2 Forcing

TPDV2

Ensemble Mean Response

E Pacific warms only in 2 members

SST (°C)

SLP (0.1 hPa), Precipitation (0.2 mm/day, WET/DRY)

ENSO Amplitude

Monthly Nino-3.4 S.D. (°C)

∇(Mean SSTA) = E - W Pacific (°C)

#1

#2

#3

Control
Summary

Stochastic PSA variability

TPDV1

Stochastic PSA2 variability

TPDV2

Frequency & Duration of El Nino

Interbasin SST Gradient

Zonal SST Gradient

ENSO Amplitude & Asymmetry
Additional Slides
TPDV in CCSM4 vs Observations

CCSM4 1300-yr run

HadISST 1870-2017 (quadratic trend removed)

Last Millennium Reanalysis (PAGES2k + CCSM4) 0-1850CE

TPDV1 47%

TPDV2 24%

r(AMO)=-0.37
r(ENSO)=+0.40

r(AMO)=-0.06
r(ENSO)=+0.81

r(AMO)=-0.09
r(ENSO)=+0.15

r(AMO)=-0.37
r(ENSO)=+0.40

r(AMO)=-0.09
r(ENSO)=+0.15
Mean State and ENSO Changes in the **NPO** Experiments

NPO Forcing

TPDV2

Ensemble Mean Response

SST (°C)

SLP (0.1 hPa), Precipitation (0.2 mm/day, WET/Dry)

TPDV2

El Niño Frequency

PDF (%)

of Events / 100 yrs

La Niña Frequency

Control

#2 #1 #3

#1 #2 #3