
Clarifying the impact 

of epistemic uncertainties 

on future marine flooding

Jérémy Rohmer j.rohmer@brgm.fr

With : G. Le Cozannet1, D. Lincke2, J. Hinkel2

2: 1:

mailto:j.rohmer@brgm.fr


> 2

‘For every dollar that is spent trying 
to quantify uncertainty, we should 

spend 10 dollars collecting and 
analyzing data that would reduce 

uncertainty.’

Gail Atkinson (2004 World Conference on Earthquake 

Engineering)
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Different categories of uncertainty

1. Knowledge-based (epistemic uncertainty)

• from limited knowledge, measurement capability and 

modeling capability on the part of the analyst. 

• Can be reduced. Extreme case: “We expect that if we had 

infinite data it would be zero”

[Abrahamson 00; Straub & Schubert 08; Marzocchi et al. 04; Deck & Verdel 12,…]
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Different categories of uncertainty

1. Knowledge-based (epistemic uncertainty)

• from limited knowledge, measurement capability and 

modeling capability on the part of the analyst. 

• Can be reduced. Extreme case: “We expect that if we had 

infinite data it would be zero”

2. Randomness (aleatory uncertainty/variability)

• “real” variability intrinsic to the physical system under study 

(e.g., occurrence of storms); 

• Irreductible;

[Abrahamson 00; Straub & Schubert 08; Marzocchi et al. 04; Deck & Verdel 12,…]
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What are the most important epistemic

uncertainties to be reduced?
oGlobal test case
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What are the most important epistemic

uncertainties to be reduced?
oGlobal test case

Role of irreductible versus epistemic

uncertainties?

Hinkel et al. (2014)



> 8

Epistemic uncertainties in loss assessment

Adapted from Wilby and Dessai (2010)

Costs

Hinkel et al. (2014)
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SSP

A scenario-based approach

5 Shared Socio-Economic

Pathways scenarios

Based on Hinkel et al. (2014)

Hinkel et al. (2014)

Costs
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SSP

A scenario-based approach

3 RCP scenarios (2.6, 4.5, 8.5)

RCP

Hinkel et al. (2014)

Costs



> 11

SSP

A scenario-based approach

HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-

CHEM, NorESM1-M

RCP

Choice in GCMs

Hinkel et al. (2014)

Costs
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SSP

A scenario-based approach

3 scenarios of contributions from ice sheets 

and glaciers: low-med-high

RCP

Choice in GCMs

Land-ice scenarios

Hinkel et al. (2014)

Costs
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SSP

A scenario-based approach

Subsidence in delta regions: Y/N

RCP

Choice in GCMs

Land-ice scenarios

Subsidence

Hinkel et al. (2014)

Costs
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SSP

A scenario-based approach

2 configurations of the damage function

RCP

Choice in GCMs

Land-ice scenarios

Subsidence

Damage function DF

Hinkel et al. (2014)

Costs
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SSP

A scenario-based approach

2 databases for estimating the extreme sea 

levels (DINA-COAST & GTSR)

RCP

Choice in GCMs

Land-ice scenarios

Subsidence

Damage function DF

Modelling of Extremes

Vafeidis et al., 2008 ; Muis et al. 2017

Hinkel et al. (2014)

Costs
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SSP

A scenario-based approach

2 Asset-to-GDP ratios: 2.8* ; 3.8

RCP

Choice in GCMs

Land-ice scenarios

Subsidence

Damage function DF

Modelling of Extremes

*Hallegate et al., 2013

To costs

(Asset-to-GDP ratio)

Hinkel et al. (2014)

Costs
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SSP

A scenario-based approach

RCP

Choice in GCMs

Land-ice scenarios

Subsidence

Damage function DF

Modelling of Extremes

To costs

(Asset-to-GDP ratio)

2 880 

combinations!

Hinkel et al. (2014)

Costs
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GCM

Using a tree-based Machine Learning approach
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Using tree-based Machine Learning approach

EAD: expected annual damage
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What are the most important epistemic

uncertainties to be reduced?
oGlobal test case

Role of irreductible versus epistemic

uncertainties?
oLocal test case
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Framed using worse case sc.

Framed using predictable

bounds
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With information on irreductible uncertainty



> 25

Yearly probability of flooding over 

time?

Le Cozannet et al., 2015
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Global sensitivity analysis at Palavas

Le Cozannet et al., 2015
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Epistemic versus Irreductible
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Classification 

Attempt!

Global sea level rise

RCP
Wave setup

Interactions

Mostly irreductible Mostly epistemic

HE
RSL

RSL

Extremes Wave

setup
RSL RCP

GSLR
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Epistemic versus Irreductible
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Classification 

Attempt!

Global sea level rise

RCP
Wave setup

Interactions

Mostly irreductible Mostly epistemic

HE
RSL

RSL

Extremes Wave

setup
RSL RCP

GSLR

 Classification not straightforward

 Most uncertainties both contain irreductible

and epistemic part

 Time evolution of the irreductible/epistemic

part?
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Summary

Global sensitivity analysis:
oDefines research priorities

oIdentifies most appropriate time-frame

oContributes to the definition of learning scenarios 

(Hinkel et al. 2019)
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Summary

Global sensitivity analysis:
oDefines research priorities

oIdentifies most appropriate time-frame

oContributes to the definition of learning scenarios 

(Hinkel et al. 2019)

Classification irreductible/epistemic

oPotentially alleviates the negative effect on 

message acceptance (Howe et al., 2019)

oRaises practical difficulties
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Thank you for your attention!


