

Understanding and evaluating monsoon processes in the MetUM

Gill Martin

With contributions from Richard Levine, Andrew Turner, Stephanie Bush and members of the joint Met Office/NCAS-Climate Monsoon Working Group

- The monsoons: still a challenge for modelling on a range of timescales.
- Known sensitivities:
 - convection and boundary layer parametrisation
 - cloud microphysics
 - Iand surface properties
 - orography
 - model resolution (atmosphere, ocean, horizontal, vertical)
 - coupled model SST biases
- What progress have we made?

Typical monsoon errors

- South Asia:
 - excessive rainfall over the equatorial Indian Ocean and the Himalayan foothills and underestimation of rainfall over the Indian peninsula;
 - in coupled models, cold Arabian Sea SST bias reduces early season rainfall.
- East Asia:
 - weak intensity of the North Pacific subtropical high pressure region associated with anomalously weak southerly inflow and an underestimation of rainfall over eastern China and Korea.
- West Africa:
 - In coupled atmosphere-ocean models the rainfall tends to be biased to the south and underestimated over the Sahel, related to warm SST biases in the Gulf of Guinea;
 - atmosphere-only models fail to reproduce the seasonal north-south movement of the rain band even when forced by realistic SSTs.
- Australia:
 - monsoon rainfall over the northern land areas tends to be underestimated while that over the surrounding sea is overestimated. Over much of the inland region rainfall is overestimated.

Understanding model errors using sensitivity tests

- SST biases
- Orography
- Indian peninsula
- Changing the convection scheme
- Horizontal resolution
- Role of the land surface

Coupled model SST biases

Met Office Hadley Centre

- Coupled model has significant cold SST bias in N Indian Ocean (develops in winter) and in equatorial Indian Ocean (response to excessive equatorial convection)
- Cold SST bias in Arabian Sea reduces monsoon rainfall (up to 30%) and delays onset by weakening local evaporation.
- But equatorial rainfall is weakened over equator in coupled model (modulated by cooling SSTs) → slightly more rain over India.

Rain (JJA): coupled - AMIP

Richard Levine

Implications for seasonal hindcasts

Met Office

In hindcast (initialised in spring) the cold N Indian Ocean SST bias does not have time to develop, leaving equatorial SST bias to strengthen monsoon through enhanced temperature gradient.

 \rightarrow preferred convection over equatorial Indian Ocean strengthens monsoon in seasonal model.

Illustrates the influence of SST biases on a range of timescales.

Sensitivity to representation of Himalayan orography

Met Office Excessive Himalayan rainfall influences dry bias over Indian peninsula.

Smoothing southern Himalayan slopes in RCM

- Smoothing steep slopes results in reduced convergence reduces Himalayan wet bias and moves rainfall to Central India and western Bay of Bengal (improvement)
- Sensitive to representation of both mean and sub-grid-scale variability of orography

© Crown copyright Met Office

Richard Levine

50E 60E 70E 80E 90E

30N

20N

10N

10S

40N

30N

20N

10N

0

10S

30E

40E

50E

-16 -12 -8

60E

-4 -3 -2 -1 0 1 2 3

rain anomaly (mm/day

-6

30E

40E

50E

The role of the Indian peninsula

Turner, Martin and Levine, submitted to Climate Dynamics

 Replace Indian peninsular land with sea

- Land and orography affect the flow through both surface roughness and low heat capacity
- Affects seasonal and diurnal cycles of surface temperature as well as mean gradients of temperature, and therefore pressure.
- The temperature gradients south of the Himalayas appear to be crucial.

rain (mm/day)

110E

8 12 16

6

120E

Moisture availability affects the depth, type and frequency of convection as well as playing a role in the evolution of surface temperature.

10N

0

10S + 30E

40E

50E

-16 -12 -8 -6

60F

-4

-3 -2 -1

70E

80E

90E

6

3

2

100E

8 12 16

110E

120E

- Daily rainfall spectra more peaked in the model than in TRMM.
- Lack of spread in daily rainfall totals, over land and sea.
- Important to examine impact of changing parametrisations on a range of timescales.

Gill Martin

Timestep behaviour of convection

0.00

©۲

Indications are that models require a "flatter" spectrum of rainfall intensity, with more frequent moderate intensity events.

Separating local versus remote effects

Changing the convective entrainment rate locally

Global Change

WEIO Change

Western Eq Pacific Change

- Increasing the entrainment rate leads to increased moistening, ascent and precipitation in the WEP and reduced precipitation in the WEIO.
- Decreased WEIO precipitation leads to more moisture in the Somali Jet and increased rainfall over India.
- The change in the WEP is locally-driven, with only small impacts on the surrounding regions.
 Stephanie Bush

Sensitivity to model resolution

- Similarly small sensitivity to change between N216 and N320 (0.56° x 0.375°)
- Changes are smaller than those seen for changing model physics.
- Latest configuration (with ENDGame dynamics): N512 has substantially more monsoon rainfall compared with N96.
- Appears to be related to increased frequency and better track of monsoon depressions.
- Impacts of increased resolution are configuration-dependent!

Impact of vegetation distribution

Differences between HadGEM2-ES modelled and "observed" vegetation

- Increased bare soil over India as vegetation dies.
- Results from persistent underestimation of rainfall over India.

Martin and Levine (2012) Earth System Dynamics

HadGEM2-A with ES vegetation

HG2-A with global ES PFTs minus HG2-A No dust direct radiative effect

- Atmosphere-only models show reduced rainfall when vegetation distribution from Earth System model is used.
- Dust production is increased significantly when the ES model's vegetation is applied.
- Removing the dust radiative impact reveals that most of this comes from the change in atmospheric stability due to the increased dust.

Future challenges

- Representation of flow and rainfall over steep orography:
 - What does it really look like? Are the observations good enough?
- Coupled model SST biases feedback on monsoon climatology, variability and teleconnections, even in seasonal forecasts
 - Is increased horizontal resolution in atmosphere <u>and</u> ocean required?
 - Linked to atmosphere parametrisation problems (e.g. equatorial Indian Ocean)
- Model resolution
 - Increased resolution doesn't always help need to manage expectations!
- Model complexity
 - May require more complex processes to simulate complex feedbacks (esp for projections)
 - BUT need to reduce basic model systematic biases in order to avoid feedbacks which may increase, rather than reduce, the uncertainty in tropical climate change.

Future challenges [cont.]

- Land-atmosphere interactions
 - Cover a range of time and space scales
 - Local and remote influences
 - Magnitude and sign of feedbacks may vary between different time and space scales
 - How important are these for the different monsoon systems?
 - Is the influence of the land surface masked in models by the dominance of atmospheric parametrisations?
 - How well do we know the actual land surface characteristics and how they vary?
 - Adding more complexity (e.g. interactive vegetation) can give unexpected results; we need to solve our basic errors first.
- Convective behaviour:
 - Parametrisations produce over-intense and intermittent deep convection
 - Lack of variability, across timescales.
 - Lack of knowledge of scale interactions, in models and observations

- Convective behaviour [cont.]
 - Require sub-daily observations to be more widespread and readily available (and reliable!)
 - Require more detailed analysis of model behaviour on a range of timescales, including sub-daily
 - Require model intercomparison at the timestep level (similar to MJO-TF diabatic processes activity)
 - Models at grey-zone resolutions are of limited use:
 - ✓ provide information on the effects of poor diurnal cycle in parametrised runs
 - * produce locally intense rainfall with unrealistic feedbacks on dynamics, land surface, etc...
 - * Require targeted parametrisation development if to be used as interim measure
 - Exploratory work now being done at ~100m resolutions
 - Requires further parametrisation development/tuning

Questions and answers

Monsoon depressions: N512 vs N96

trajectories and

rainfall contribution

total rainfall in years with depressions

a) GA5.0 AMIP N512: 18 depression years JJA mean rainfall (mm/day)

b) GA5.0 AMIP N512:42 depression trajectories and rainfall 40N ~3x more weak systems 30N 20N 10N 50E 60E 80E 90E 70E 0.25 1.25 2.25 0.75 1.75

d) GA5.0 AMIP: 11 depression years JJA mean rainfall (mm/day)

0.25 0.75 1.25 1.75 2.25

total minus depression rainfall

f) GA5.0 AMIP: JJA mean MINUS depression rainfall (mm/day)

Monsoon depressions: N512 vs N96

total rainfall in years with depressions

trajectories and rainfall contribution

total minus depression rainfall

 d) GA5.0 AMIP: 1 depression years JJA mean rainfall (mm/day)

f) GA5.0 AMIP: JJA mean MINUS depression rainfall (mm/day)

