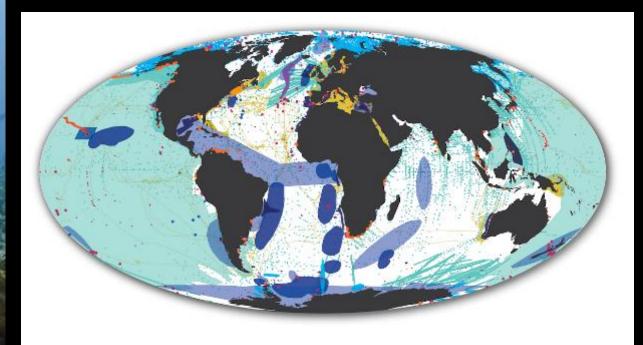


Biology and Fisheries applications: Requirements, synergies, and gaps

Jörn Schmidt Patrice Brehmer, Abdoulaye Sarre, Heino Fock, Marek Ostrowski

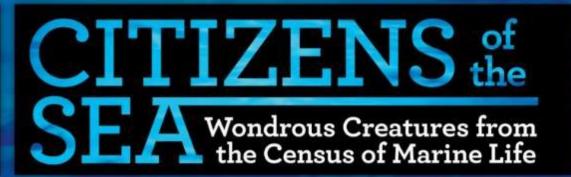
Outline

- What do we mean with Biology and Fisheries?
- Relevance of the Tropical Atlantic for Fisheries
- What data do we need to collect? And what is currently done?
- What needs to be done more and how does that link to other observations?


Biology and fisheries - what do we mean?

- Phytoplankton
- Zooplankton from nano to makro
- Ichthyoplankton fish eggs and larvae
- Fish juvenile and adult
- Shellfish Squid, mussels, etc.
- Benthic organisms corals, sponges, etc.
- Megafauna birds and marine mammals

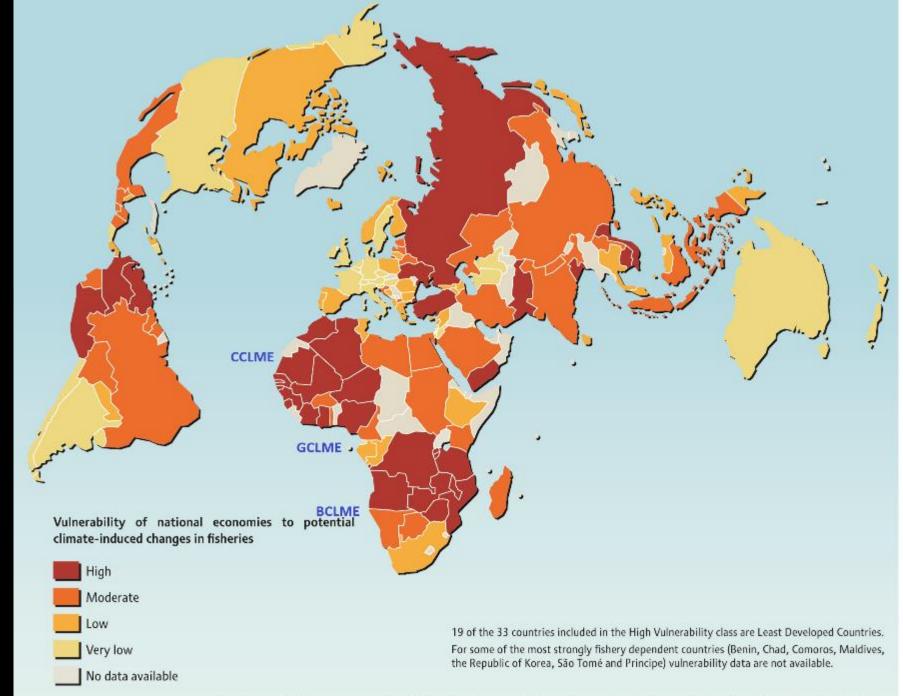
Sampling on biodiversity



2000-2010 2700 Scientists 80+ Nations 540 Expeditions Costs: > 650 mill US Dollars (2010)

Coastal	Polar	Pelagic	Deep Sea	Global Information and Anaylsis
📒 Regional Ecosystems (GoMA)	Arctic Ocean (ArcOD)	Top Predators (TOPP)	Vents and Seeps (ChEss)	Cceans Future (FMAP)
Near Shore (NaGISA)	Antarctic Ocean (CAML)	Continental Shelves (POST)	Abyssal Plains (CeDAMar)	Information Systems (OBIS)
Coral Reefs (CReefs)		Zooplankton (CMarZ)	🛸 Seamounts (CenSeam)	Microbes (ICoMM)
			Continental Margins (COMARGE)	Oceans Past (HMAP)
			Mid-Ocean Ridges (MAR-ECO)	

NANCY KNOWLTON


Biodiversity

Ecologically or Biologically Significant Marine Areas (EBSAS)

Fish Catches

	FISHING AREA CODE	FISHING AREA NAME	AVERAGE 2003-2012	2013	2014	AVERAGE (2003- 2012) -2014	2013– 2014	2013-2014
2				(Tonnes)		(Percei	ntage)	(Tonnes)
	21	Atlantic, Northwest	2 136 378	1 853 747	1 842 254	-13.8	-0.6	-11 493
2	27	Atlantic, Northeast	8 969 599	8 454 196	8 654 722	-3.5	2.4	200 526
	31	Atlantic, Western Central	1 450 734					
	34	Atlantic, Eastern Central	3 929 634					
	37	Mediterranean and Black Sea	1 484 499	about 9 mill. tonnes of catch				
ŝ	41	Atlantic, Southwest	2 021 094					
	47	Atlantic, Southeast	1 479 746					
	51	Indian Ocean, Western	4 313 756	4 579 366	4 699 560	8.9	2.6	120 194
È	57	Indian Ocean, Eastern	6 274 406	7 617 838	8 052 256	28.3	5.7	434 418
	61	Pacific, Northwest	20 256 795	21 374 002	21 967 669	8.4	2.8	593 667
	67	Pacific, Northeast	2 831 978	3 205 426	3 148 703	11.2	-1.8	-56 723
	71	Pacific, Western Central	11 298 748	12 398 778	12 822 230	13.5	3.4	423 452
	77	Pacific, Eastern Central	1 825 231	2 024 994	1 907 785	4.5	-5.8	-117 209
11.00	81	Pacific, Southwest	642 355	581 852	543 030	-15.5	-6.7	-38 822
	87	Pacific, Southeast	11 716 946	8 518 117	6 890 058	-41.2	-19.1	-1 628 059
	18, 48, 58, 88	Arctic and Antarctic areas	161 608	236 617	311 896	93.0	31.8	75 279
	WORLD TOTAL		80 793 507	80 963 120	81 549 353	0.9	0.7	586 233

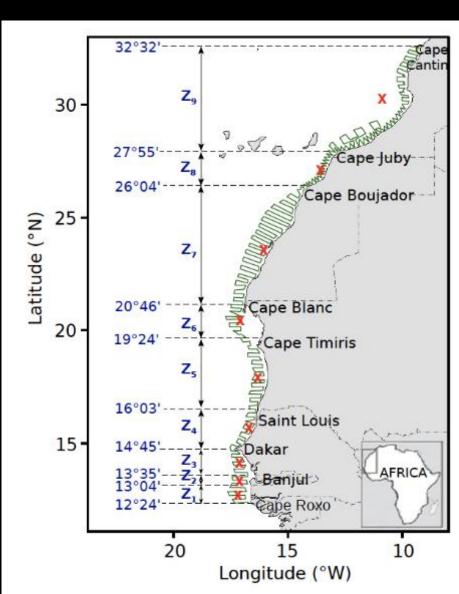
Source: E. H. Allison et al, Vulnerability of national economies to the impacts of climate changes on fisheries, Fish and Fisheries, 2009, 10, pp. 173-196.

What data do we need to collect to assess fish stocks?

- Fishery-dependent data
 - Target species
 - Catch
 - Bycatch
 - Discards
 - Effort
- Fishery-independent data
 - Egg surveys
 - Larval surveys
 - Juvenile and adult surveys

Fishery independent surveys

Net surveys



There are more types, of course Many of those are also used in the tropical Atlantic


Small pelagics

Exemplatory cruise track along the West-African coast

Hydroacoustics

The EAF Nansen Programme

 Since 1975 a joint initiative of Norway and the Food and Agriculture Organization of the United Nations (FAO)

The research vessel, Dr Fridtjof Nansen was built for the programme

1 1 y 1

EDIDTJOF NANSEN

EAF Nansen Programme

Fisheries and ecosystems	Pollution	Climate variability and change
 > Abundance, distribution and dynamics of transboundary stocks > Biological parameters and life cycle of main species > Identification of vulnerable marine habitats > Mapping biodiversity, particularly on the sea-floor > Characterization of ecosystems 	 Environmental assessment of the impact of oil/gas extraction and other mining activities Measuring levels of hazardous substances in bottom habitats and in fish, and identifying pollutant pathways Mapping distribution and density of marine debris, including microplastics 	 Examining trends in climate-change related indicators Assessing how climate variability and change affects marine ecosystems, including food-web dynamics, recruitment, distribution, migration and growth of fish species Understanding how climate change affects ocean biochemistry processes

Large Pelagics

DATA COLLECTION

The data that can be used in stock assessments tail into two categories: fishery ndependent date that are collected by scientists and tishery dependent date that are collected by commercial and recreational tishermen as they catch their rish, currently, the majority or information that is used in the Atlantic bluefin stock assessments comes from fishery dependent catch and market records.

Fishery Independent Data

Aerial Surveys

Using airplanes, scientists identify and count fish that are parts of schools near the ocean surface. Aerial surveys can collect data on the numbers of reproductive mature adults and younger juvenile lish.

GROWTH

STUDIES

DATCH

annoana

Tagging—Fishery Independent

By releasing turns with tags that are returned by fishermen when the fish is caught, or using tags that communicate and send data back to setallities acientists can gather information on fish movement, spewning behaviors supprised distribution, and natural and its hirst montality.

Growth Studies Combining the results of tagging studies with **biological sampling and** tooking at the sizes of wild tish can help scientists chart. growth rates and the ratio sharen length and weight for different aces of turn.

Biological Sampling Analysis of the chemical composition of the longe ear hone, or prolith, of individual tanas can tell scientists where a turns was born. Scientists can also count the rings of the citalith or other borw parts which much like the same

of a true burtly indicate the

age of the spirst Fishery Dependent Data

Catch Records

Logisopia, observer data, and catch records from follownees around the Atlantic provide scientists a wealth of information on the size, spatial distribution, and abundance of the bluefin ture population. They also provide data on the effort fahermen are expending to catch each flak. However, recorded information from fahermen is often is accurate and incomplete and can negatively impact the accuracy of the stack assess

Market Records

Tinde documents and records of the fish bought and sold at fish markets often include the weight of individuals and can be used to calculate the size distribution of a population

Tagging—Fishery Dependent

Scientists have worked with recreational Pahermen to tag turks and collect data on the movement habits and migration patterns of the population.

BLUEFIN TUNA STOCK ASSESSMENTS

Stock assessment models use mathematical formulas, statistical technicules, educated assumptions about the biology of the species, and the provided date to simulate in facts propulation methodividual flefs and born, grow up. reproduce, and dis.

THE MODEL

ATRIAL

TADDING

ICCAT ecliontists use a virtual population analysis (VPA) model that brooks the Atlantic bluefin tuna population into age classes, essigns each class its own growth and mortality rates, and works beclowerds using both rishery independent end dependent date to celculate pest population lavels, the model is often run multiple times, incorporating a range of assumptions and scenarios.

MODEL RESULTS

STOCK SIZE

Stock assessment models provide actentists and managers with estimates of stock size, mortality over time, and projections of tub, re-conditions. These are then compared with concrete numbers, called biologics) reference points, to judge the health of the population.

Biological Reference Points

Stock Size

FISHING

MORTALITY

Stock size can be measured in two main ways: Abundance is the number of fuh in the population, biomass is the total weight of all the tables the population. Not models report stock tits in learns of biomass.

Fishing Mortality

TARGETS

future mortality is the rate that flut are removed from the population by harvesting. A population is undergoing eventshing when more fails are being caught then can naturally be replaced.

Targets

Targets are members that managers aim to achieve and maintain. One of the most important is maximum. sustainable yield 0/513, which is the maximum number of fish that can be tistainably caught and semicised Born the monoisticit, way after user.

Thresholds esholds are values that

indicate a population is in trouble and that managers aim mavoid. For example, the this shold for an every shed stock occurs at the point when the population fails below the level that can support MS %

MANAGEMENT OPTIONS

while stock assessments provide information on the status of the population and specify the likely outcomes of a variety of management options, it is ultimately up to the tishery managers to choose which management plan to implement, these decisions are often influenced by other factors besides the scientific information provided by the stock easessment.

HREBHOUD

Quotas Managen often set a Total Allowable Catch (TAD), which limits the total weight of this that can be harvested in a specified time period.

Area and Time Closures Both area and time desures are an effective way to reduce harvest or protect important habitat. or spawning grounds.

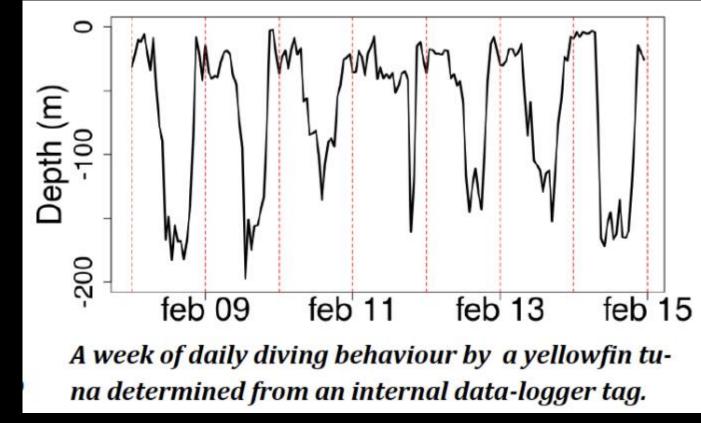
Size Restrictions By resolding the relation or readman size of fish that can be kept by fishermen, managers can protect juvenile fait or metare reproductive adults.

16

MARKET

RECORDS

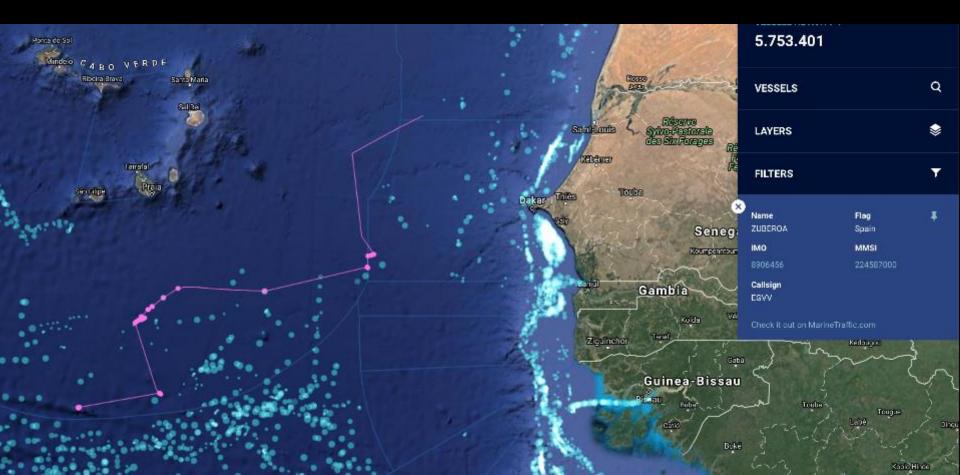
ICCAT Atlantic – Atlantic Ocean Tropical Tuna Tagging Programme (AOTTP)


The AOTTP Programme (http://www.iccat.int/AOTTP/en/) is collecting tag-recapture data from Atlantic Ocean tropical tuna fisheries. AOTTP will tag 120,000 fish using conventional and electronic tags.

Location of yellowfin tuna tagged between June 2016 and Sept 2017

ICCAT Atlantic – Atlantic Ocean Tropical Tuna Tagging Programme (AOTTP)

Speaking about tagging...



Fishery dependent surveys

Global Fishing Watch

Global Fishing Watch

- Better use of existing data
- Surveys for commercial species
- Surveys for endangered species
- Relevance for society

Gaps

- Missing or not enough communication between communities
- Missing data exchange protocols
- Missing survey protocols

Synergies

- a lot 🙂
- Adding value to observations by bringing data together

So long, and thanks for all the fish!