ENSO Metrics: Status & Next Steps

Presented by Andrew Wittenberg

with contributions from Yann Planton, Jiwoo Lee, and the ENSO Metrics Team

CLIVAR Pacific Region Panel Meeting, 13 February 2023

ENSO Metrics: Background

CLIVAR Research Focus: ENSO in a Changing Climate

http://www.clivar.org/research-foci/enso

2014-2018; then merged back into CLIVAR PRP Co-chairs: E. Guilyardi (IPSL) & A. Wittenberg (NOAA GFDL) Implementation & application: **Yann Planton** (IPSL/PMEL) 12 ENSO experts (France, US, Australia, Japan, Korea, UK)

Goals:

- Understand ENSO processes & past/future changes
- Develop evaluation protocol for ENSO in GCMs
- Target obs to improve models & projections

ENSO Performance: Andrew, Yann, Antonietta, Mike, Matt, Scott, ...

Teleconnections: Scott, Yann, Shayne, Cai, ...

Processes: Yann, Eric, Soon-II, Fei-Fei, Tobias, ...

Community package liaisons:

PMP: Jiwoo Lee & Peter Gleckler (PCMDI)

ESMValTool: Veronika Eyring (DLR); Bryan Lawrence (NCAS); Barcelona (BSC)

CliMAF: Jérôme Servonnat (IPSL)

ENSO metrics strategy

Start with a small subset of **essential**, **simple** metrics.

Avoid getting bogged down with complexity
Aim more at model *users* than model developers.
Expand as code, interfaces, use-cases take shape.

Metrics (scalars) are first step in a **diagnostic hierarchy**Useful for intercomparing models & metrics
Dive-down diagnostics: Scalar → 1d → 2d → 3d
Want to see both "forest" and "trees".

Account for:

- Internal variability (multiple historical ensemble members)
- Obs uncertainties (use multiple obs products, epochs)

Written in **Python**

Powerful, flexible Plugs into community efforts

Metric Requirements

- 1. **Documentation:** Whys & hows of metric and collection
- 2. Math **definition** of metric (positive scalar "distance")
- 3. Input data **frequency** (monthly, daily, ...) and **grid** (1x1 lat/lon, region, etc.)
- 4. Obs (as many as possible) and epoch to use
- 5. Literature **reference** to show robustness/utility of metric
- 6. Sample size (duration or ensemble) needed for metric to make sense
- 7. Dive-down diagnostics (e.g. the spatial maps used to compute RMSE)
- 8. Normalization to use for multi-model intercomparison (single color bar)

Warm events: SSTA (°C, y=0, t=Dec(0))

detrended, smoothed with 5mo triangle 1961-2016 composite, Dec(0) NINO3 SSTA > 0.75°C

Warm events: NINO3 SSTA (°C)

detrended, smoothed with 5mo triangle 1961-2016 composite, Dec(0) NINO3 SSTA > 0.75°C

ENSO performance

RMSE-based metrics

Colors: relative to median value of metric (last column)

Numbers: metric value

Dive-down diagnostics: Annual-mean SST

Metric:

RMSE(obs, model)
IPSL-CM6A-LR = 1.6°C

Dive-down level 1:

Dive-down level 2:

ENSO Metrics: Public Release & Documentation

Planton et al. (BAMS 2021)

"Evaluating climate models with the CLIVAR 2020 ENSO metrics package."

- Documents & demonstrates the package
- CMIP6 models mostly outperform CMIP5, except for some process metrics (e.g., the h → SST coupling worsened)

CMIP5/6 ENSO Metrics summary

https://pcmdi.llnl.gov/research/metrics/enso

- Interactive dive-down diagnostics
- Pre-computed model metrics for download (JSON & Excel)

Wiki:

https://github.com/CLIVAR-PRP/ENSO_metrics/wiki

Software:

https://github.com/CLIVAR-PRP/ENSO metrics

Recent studies using the ENSO Metrics Package

Lee et al. (GRL 2021): "Robust evaluation of ENSO in climate models: How many ensemble members are needed?"

- For CMIP5/6 & LEs, need $N \ge 50$ to constrain ENSO baseline & process metrics
- Less for climatology (N ≥ 6) & ENSO teleconnections (N ≥ 12)
 for 95% of N-ensemble means (of 1979-2018 metrics) to fall within 10% of actual mean metric

Xu et al. (JC 2022): "The Andes affect ENSO statistics"

- Elevate the Andes to more realistic levels in CESM_1.2.2
 - → better (more LN-like) troPac climate
 - → weaker ENSO; more asymmetric, irregular, evaporatively-damped

Planton et al. (in prep for JAMES): "Detecting ENSO variance changes in a warmer world."

- CMIP6 historical runs: Sample size to detect past & future ENSO amplitude changes?

 Need 5 9 members, for ensemble-mean 30yr variance to fall within 15% of actual long-term variance
- If ENSO strengthens → more decadal modulation → later detection
- Quiet/hyperactive ENSO decades can aid earlier detection

Lee et al. (in prep for GMD): "Diversifying objective summaries of Earth system model performance: An overview of the **PCMDI Metrics Package (PMP)**."

- A section is devoted to the **ENSO metrics**

Community Connections

CLIVAR/ICTP ENSO Summer School

Yann Planton developed & ran student tutorials, applying package to CMIP6

→ supported the WCRP Academy Lighthouse Activity (LHA)

Jiwoo Lee joined the CMIP7 Climate Model Benchmarking Task Team

→ Actively promoting the CLIVAR ENSO Metrics via the PMP framework

Connections with other community efforts

PMP, ESMValTool, CliMAF, MDTF
ES-Doc & Comparator: model resolution, lineage, parameterization schemes

Tropical Pacific Observing System (TPOS)

Obs targeting + new reference data

Next Steps for ENSO Metrics

Leverage recent enhancements

- Added more **obs datasets** to test robustness (Planton et al., in prep)
- Index statistics: mean, stddev, skewness, d.o.f. → significance
- Wait times between ENSO events: mean, stddev, skewness, PDFs, transition probabilities

New metrics in development

- ENSO regional **teleconnections**: regressions, composites (per McGregor et al. 2022)
- New ENSO **process metrics** (per <u>Chen et al. JC 2021</u>)
 BWJ indices, ML heat budget, nonlinear dynamical heating (NDH)
- Model-analogs as metrics of ENSO evolution, predictability, forecast skill
 Applied to NMME & CMIP5 historical: Ding et al. (<u>JC 2018</u>; <u>GRL 2020</u>)

 Applied to CMIP6 & LE, historical & future: Lou et al. (subm. & in prep.)
 + ongoing work at NOAA PSL & GFDL
- CLIVAR PRP Working Group on Conceptual Models of ENSO

New & proposed projects:

- Impact of climate change on ENSO (Planton, Lee, et al., in prep)
- EqPac upwelling & mixing in CGCMs (Wittenberg et al., NOAA CVP), funded 2023-25
- Dynamical ENSO metrics & emergent constraints (Jin et al., NOAA MAPP), submitted

Action Items for PRP

- 1. **Feedback** on metrics, interfaces, development, dissemination
- 2. Recommend **observational** references
 - Latest gridded products, reanalyses
 - How to best characterize obs uncertainties?
 - Best epochs to use?
- 3. Recommended **realizations** for model & obs (epochs, ensemble sizes)
- 4. Ideas for new metrics
 - Expand existing collections: e.g. connect to conceptual models
 - New collections: Climate change, teleconnection processes, impacts, ...
- 5. Ideas for applications & tiering of metrics
 - Model evaluation & selection/weighting
 - Physical **links** among metrics; **emergent constraints** for future change
- 6. Resources: **Postdocs**, web/data techs, funding opportunities, ...