

Tropical DISGO: Tropical Diurnal and Intraseasonal Variability: SeaGliders in the Indian Ocean

UK component of CINDY2011

Adrian Matthews, Karen Heywood, David Stevens

School of Environmental Sciences and School of Mathematics
University of East Anglia

Diurnal cycle in the MJO

- → Strong diurnal cycle of SST in suppressed phase of MJO
- ★ Leads to diurnal cycle in depth of atmospheric boundary layer, and premoistening of troposphere prior to active MJO convection
- \star Resolving diurnal cycle in ocean model (need $\Delta z \sim 1$ m) leads to larger amplitude intraseasonal SST anomalies and more accurate simulation of MJO (Bernie et al., 2005, 2007, 2008)
- → Diurnal cycle strongly dependent on fine vertical structure of ocean

Ocean teleconnection feedback mechanism for MJO

Triggering the next-but-one MJO

In situ measurements in Indian Ocean

- → Very few
- → Not enough to resolve diurnal cycle or detailed structure of equatorial waves during MJO
- → Need high temporal and spatial resolution measurements of ocean temperature and salinity
- → Co-located with high density of atmospheric measurements

Seagliders

- + Autonomous underwater vehicles
- → No propellor
- → Oil-filled bladder controls buoyancy
- → Shifting internal ballast (battery) controls pitch and roll
- → On surface, sends data and receives new instructions through Iridium satellite phone network
- → Real-time upload to GTS
- + Speed 0.25 m s⁻¹ (20 km day⁻¹)
- → Maximum depth 1000 m
- ★ Temperature, salinity, chlorophyll, dissolved oxygen sensors
- → Vertical resolution 0.25 m

Main observation locations for CINDY2011

Including 3 UEA Seagliders

→ 4 month deployment (October 2011 to January 2012)

Proposed Seaglider flight profiles Sampling diurnal and intraseasonal variability

Modelling of Tropical DISGO / CINDY2011 period

- → Assess importance of ocean thermodynamical and dynamical processes in simulation and prediction of MJO during CINDY2011 period, validating on Seaglider and other CINDY data
- + 1-D mixed layer modelling
- → GCM modelling (HadGEM3H; 0.83 x 0.56 degree atmosphere, ¼ degree NEMO ocean with 1 m resolution near surface):
 - → Ocean-only (initialised with UK Met Office FOAM analysis)
 - + Coupled
- → Sensitivity experiments include:
 - Diurnal averaging
 - → Surface fluxes replaced by (diurnally varying) climatology
 - → Ocean dynamical fields replaced by climatology

Tropical DISGO and CINDY2011

- → NERC proposal submitted 10 June 2010
- → Decision expected December 2010
- + Project partners:
 - ★ Kunio Yoneyama (CINDY PI, and deployment from M/V Mirai)
 - → Eric Schulz (CAWCR, retrieval on M/V Southern Surveyor)
 - → Chidong Zhang (DYNAMO PI)
 - → Matthew Martin (UK Met Office, data assimilation into FOAM)