
Tropical Atlantic Observing System

Biogeochemical Applications: Requirements, Synergies and Gaps.

Why biogeochemistry in the Tropical Atlantic?



GOOS Essential Ocean Variables

Oxygen	
Nutrients	
Inorganic carbon	
Transient tracers	
Particulate matter	
Nitrous oxide	
Stable carbon isotopes	
Dissolved organic carbon	
Ocean colour (Spec Sheet under devel	opment)

BIOGEOCHEMISTRY

GCOS Essential Climate Variables (ECVs) +

	Physics:			
	Subsurface temperature, subsurface salinity, Subsurface currents, ocean surface stress, ocean-surface heat flux	GOOS/JCOMM		
Oceanic	Sea-surface temperature, surface currents, sea-surface salinity, sea level, sea state, sea ice	GOOS/JCOMM	WGClimate	
Ce	Biogeochemistry:			
0	Inorganic carbon, oxygen, nutrients, transient tracers, nitrous oxide (N₂O), ocean colour	GOOS		IOCCP
		GOOS	WGClimate	IOCCG
	Biology/ecosystems:			
	Plankton, marine habitat properties	GOOS		GEOBON

Nitrous Oxide

Nutrients

Transient Tracers

Version: 2017.08.25

ECV IN BRIEF

Domain: Subdomain Scientific Area: Products

Ocean Biogeochemical Carbon cycle and other GHGs Interior ocean N₂O N₂O air-sea flux

Nitrous Oxide

Nitrous oxide (N2O) is an important climate-relevant trace gas in the Earth's atmosphere. In the troposphere it acts as a strong greenhouse gas and in the stratosphere it acts as an ozone depleting substance because it is the precursor of ozone depleting nitric oxide radicals. The ocean - including its coastal areas such as continental shelves, estuaries and upwelling areas - contribute about 30% to the atmospheric N2O budget.

ECV Products

		REQUIREMENTS				
PRODUCT	DEFINITION	FREQUENCY	RESOLUTION	REQUIRED MEASUREMENT UNCERTAINTY	STABILITY	STANDARDS/ REFERENCES
INTERIOR OCEAN N20	ххх	Annual to decadal	Every 20°	discrete samples: ~±5%;	Not specified	www.ioccp.org/ index.php/foo
N ₂ O AIR-SEA FLUX	xxx	Annual to decadal	Every 20°	cont. sampling: <±1%	Not specified	www.ioccp.org/ index.php/foo

Selected Data Sources

MarinE MethanE and NiTrous Oxide (MEMENTO) database https://memento.geomar.de/submit-vour-data

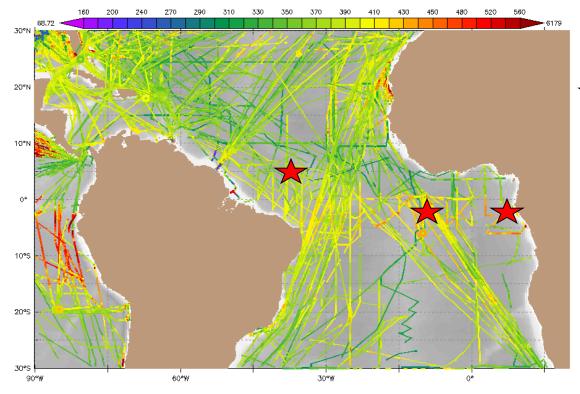
Essential Ocean Variable (EOV): Nitrous Oxide

Background and Justification

Nitrous oxide (N2O) is an important climate-relevant trace gas in the Earth's atmosphere. In the troposphere it acts as a strong greenhouse gas and in the stratosphere it acts as an ozone depleting substance because it is the precursor of ozone depleting nitric oxide radicals. Because of the on-going decline of chlorofluorocarbons and the continuous increase of N2O in the atmosphere, the contributions of N₂O to both the greenhouse effect and ozone depletion will be even more pronounced in the 21st century. The ocean - including its coastal areas such as continental shelves, estuaries and upwelling areas - is a major source of N₂O and contributes about 30% to the atmospheric N₂O budget. Oceanic N₂O is mainly produced as a by-product during archaeal nitrification (i.e. ammonium oxidation to nitrate) whereas bacterial nitrification seems to be of minor importance as source of oceanic N2O. N2O occurs also as an intermediate during microbial denitrification (nitrate reduction via N2O to dinitrogen, N2). Nitrification is the dominating N₂O production process, whereas denitrification contributes only 7-35% to the overall N₂O water column budget in the ocean. The amount of N2O produced during both nitrification and denitrification strongly depends on the prevailing dissolved oxygen (O2) concentrations and is significantly enhanced under low (i.e. suboxic) O₂ conditions, N₂O is usually not detectable in anoxic waters because of its reduction to N₂ during denitrification. Thus, significantly enhanced N2O concentrations are generally found at oxic/suboxic or oxic/anoxic boundaries. The strong O2 sensitivity of N2O production is also observed in coastal characterised by seasonal shifts in the O₂ regime. A biological source of N₂O in the well-oxygenated mixed layer/euphotic zone seems to be unlikely. Global maps of N2O in the surface ocean show enhanced N2O anomalies (i.e. supersaturation of N2O) in equatorial upwelling regions as well as N2O anomalies close to zero (i.e. near equilibrium) in large parts of the open ocean. The MEMENTO (The MarinE MethanE and NiTrous Oxide database: https://memento.geomar.de) project has been launched with the aim to collect and archive N₂O data sets and to provide actual fields of surface N₂O for emission estimates.

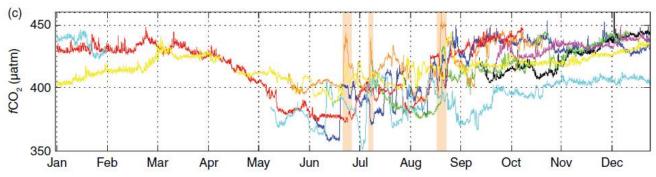
For the glossary of terms and list of abbreviations please see the back of the document.

Name of EOV	Nitrous Oxide
Sub-Variables	Nitrous Oxide (NzO)
Derived Products	Global N2O concentration fields, Global Ocean N2O emission estimates
Supporting variables	Surface and subsurface temperature, Surface and subsurface salinity, Atmospheric pressure
Responsible GOOS Panel	Biogeochemistry Panel
	Contact: ioccp@ioccp.org


TAOS Review. Portland Feb 8-9, 2018

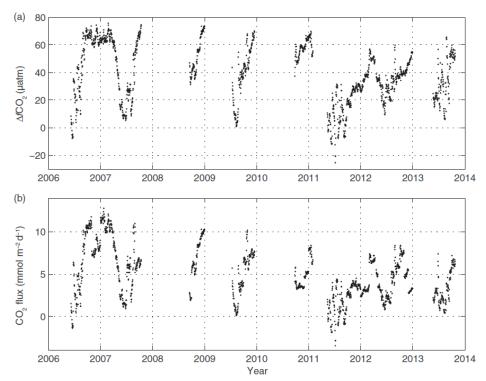
The Global Ocean Observation System (GOOS) is a permanent alobal system for observations, modelling and analysis of marine and ocean variables to support operational ocean services worldwide. GOOS provides accurate descriptions of the present state of the ocean, continuous forecasts of the future conditions of the sea.

Carbon Dioxide fluxes

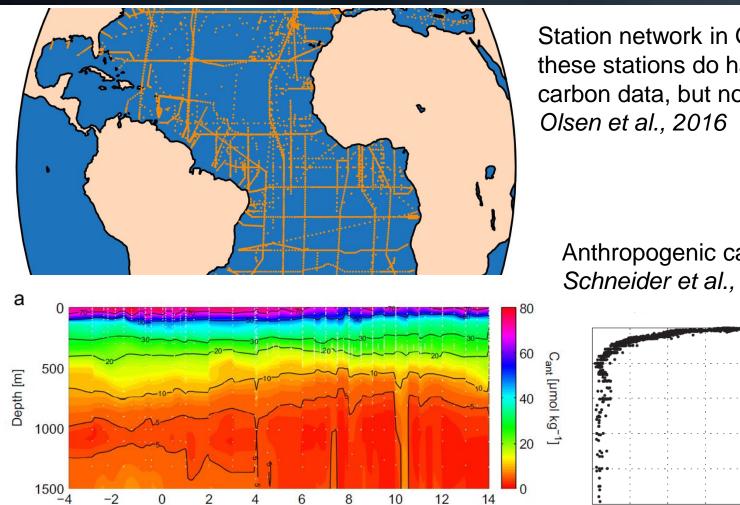

 \star pCO₂ mooring

"The eastern tropical Atlantic is patchier than expected with area of low CO_2 concentrations neighbouring regions of large CO_2 outgassing" *Lefevre 2009*

This is all pCO₂ data in the Tropical Atlantic Ocean in SOCAT


Carbon Dioxide fluxes

pCO₂ data from 6°S, 8°E, *Lefevre et al., 2016*


Long-term sustained observations are necessary to better document the processes affecting this region given the strong variability at this site.

In addition, more CO_2 sensors would be required to monitor the carbon properties in other parts of the tropical Atlantic and help to better understand the evolution of the source of CO_2 at the basin scale.

Interior ocean carbon

14

0

20

40

Cant [µmol kg⁻¹]

60

80

ASSOCIATION

12

TAOS Review, Portland Feb 8-9, 2018

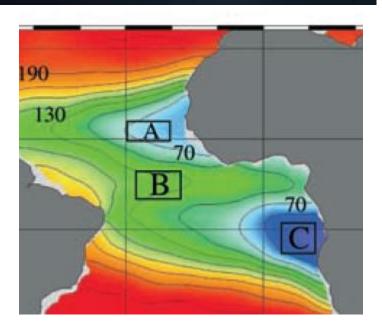
4

6

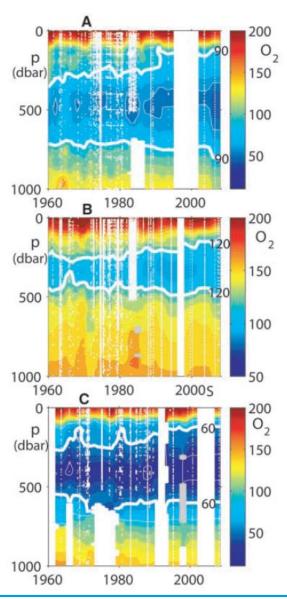
8

10

2

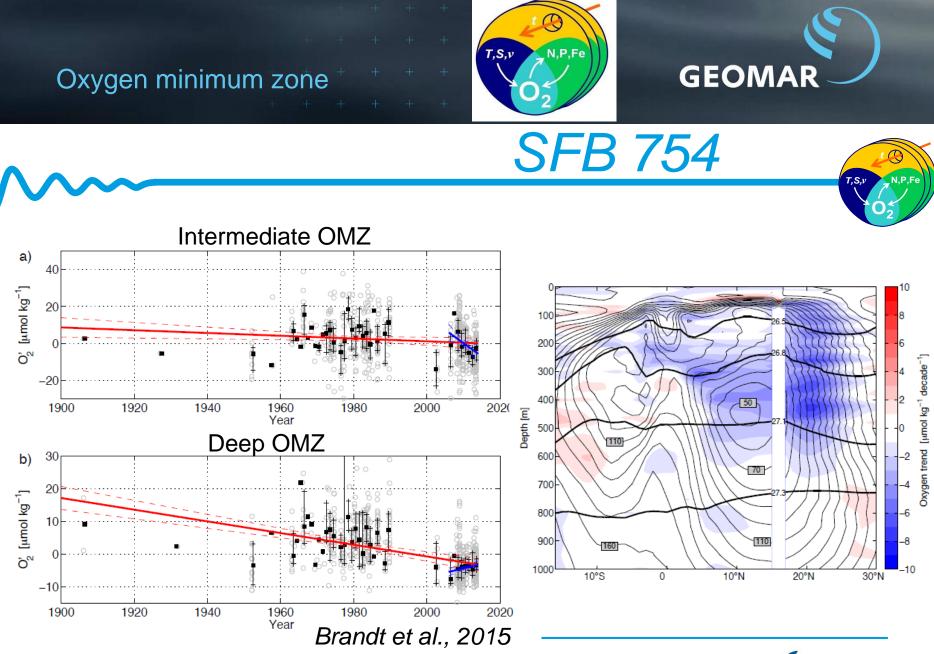

-2

0


Station network in GLODAP, most of these stations do have inorganic carbon data, but not all.

Anthropogenic carbon along 23°W Schneider et al., 2012

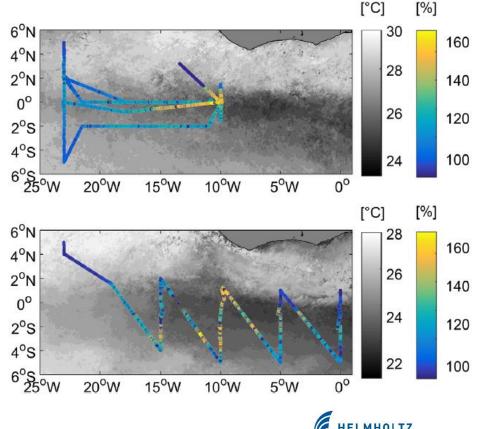
Oxygen



Decreasing oxygen concentrations in the ETNA *Stramma et al., 2008*

GEOMAR

TAOS Review, Portland Feb 8-9, 2018

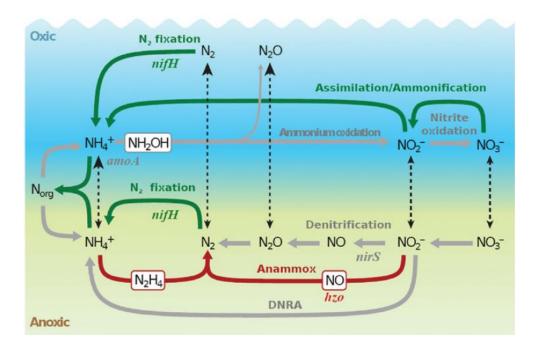


Nitrous Oxide

Nitrous oxide (N_2O) is an important climate-relevant trace gas in the Earth's atmosphere. In the troposphere it acts as a strong greenhouse gas and in the stratosphere it acts as an ozone depleting substance because it is the precursor of ozone depleting nitric oxide radicals.

Estimated sea-to-air fluxes of N₂O from the ACT (5.2 +/- 2.6 mol m⁻² d⁻²) suggest that in May–July 2011this coldwater band doubled the N₂O efflux to the atmosphere with respect to the adjacent regions, highlighting its relevance for marine tropical emissions of N₂O.

Arevalo-Martinez et al., 2017

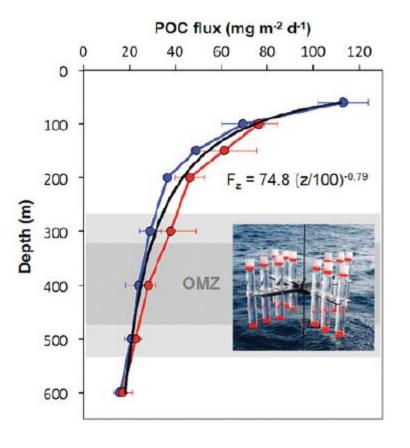


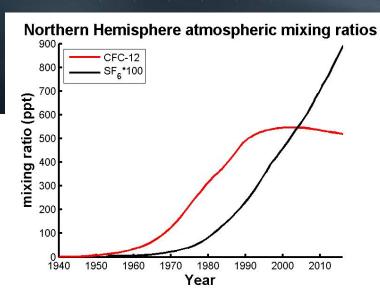
SSOCIATION

GEOMAR

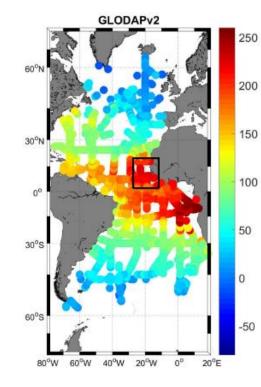
Nutrients

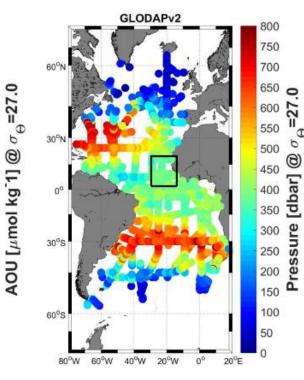
Complex cycle of nitrogen in OMZs

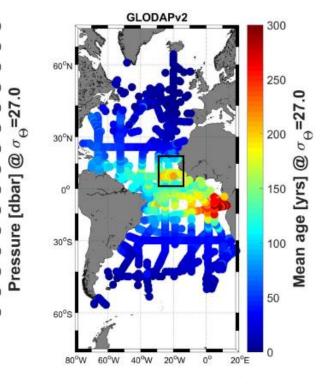

Dissolved Organic Carbon⁺ And + + + Particulate Matter⁺ + + +


Dissolved organic Carbon (DOC) represents one of the largest exchangeable reservoirs of organic material on Earth, contributing to ~20% of the biological pump via meridional overturning circulation.

Observation of POM within a global observing system directly address the question of whether the ocean's biomass and productivity are changing






Transient tracers



Transient tracers

