

Enhancing Prediction of Tropical Atlantic Climate & its impact (PREFACE)

To improve climate prediction in the Tropical Atlantic to a level where socio-economic benefit can be realised, with focus on sustainable management of marine ecosystems and fisheries

EU FP7, 2014-2017

28 partners, 18 countries

www.preface-project.eu

PREFACE team interests in joint analysis of CORE-II runs for the Tropical Atlantic

- Interest in contributing to a coordinated analysis
- Partners have contributed to the CORE-II project (e.g., CNRM, MICOM, CERFACS)
- No centralised data makes access difficult
- Data useful for master thesis
- Topics of special interest:
 - New observations from the Tropical Atlantic
 - Errors in seasonal cycle and Benguela-Angola Front
 - Studies of Atlantic Niño, Meridional Mode,
 thermodynamic and dynamical O-A interaction, and
 mechanisms for decadal modulation of variability

Observing System

PREFACE has a new mixed-layer heat and freshwater budget climatology, improved using ARGO and coastal data

Download: http://herakles.geomar.de:8000/MLETA

EUC seasonal transport variability from observations and GCM

GCM simulations (TRATL01) are obtained using a global NEMO model with a high-resolution (1/10°) tropical Atlantic nest (30°S-30°N)

EUC transport in general too large, with some agreement in the EUC seasonal cycle in the central tropical Atlantic with respect to observations

Tropical Eastern Boundary Upwelling

from Kopte et al. (2016) to be submitted to JGR

Off Angola, 11°S

- Hydrographic data from the Nansen program (semiannual cruises executed by FAO) and PREFACE/SACUS cruises and gliders
- Near-surface layers are dominated by superposition of semi-annual and annual components

Western Boundary Circulation

from Hummels et al. (2015) GRL

NorESM SST bias in Angola-Benguela Front Zone: 50% in CORE-II runs + 25% from CAM4 wind errors

Annual mean SST bias averaged between 17-22S NorESM and uncoupled sensitivity experiments

Koseki et al. to be submitted

Thermodynamic Ocean-Atmosphere interactions are able to explain key Atlantic Nino features

GFDL – CM2.0 AGCM-slab coupled model

ag-regression:

Thermodynamic process appear to dominate variability in climate models, but is this realistic?

and turbulent fluxes

Nnamchi et al. 2015,2016, Trzaska et al. 2007

PREFACE team interests in joint analysis of CORE-II runs for the Tropical Atlantic

- Topics of special interest:
 - New observations from the Tropical Atlantic
 - Errors in seasonal cycle and Benguela-Angola Front
 - Studies of Atlantic Niño, Meridional Mode,
 thermodynamic and dynamical O-A interaction, and
 mechanisms for decadal modulation of variability