Characterizing tropical Pacific SST predictability

Matt Newman
University of Colorado/CIRES and
NOAA/ESRL/PSD

Newman, Matthew, and Prashant Sardeshmukh, 2017: Are we near the predictability limit of tropical sea surface temperatures? *Geophys. Res. Lett.*, doi: 10.1002/2017GL074088 Ding, Hui, Matthew Newman, Michael A. Alexander, and Andrew T. Wittenberg, 2018: Skillful climate forecasts of the tropical Indo-Pacific ocean using model-analogs. *J. Climate*, doi: 10.1175/JCLI-D-17-0661.1

from nonlinear GCMs (top) to linear stochastically forced models (bottom)

$$\frac{dx}{dt} = A(x) + P(x) + R$$

$$\frac{dx}{resolved} = P(x) + R$$

$$\frac{dx}{resolved} = P(x) + R$$

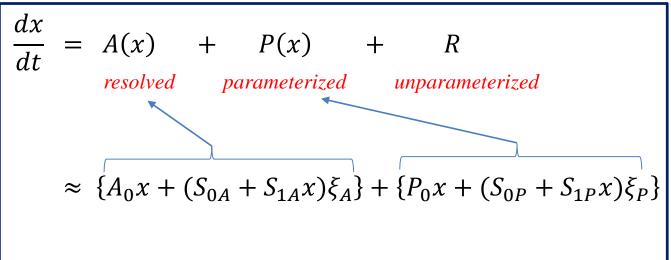
$$\frac{dx}{dt} = R$$

$$\frac{dx}{dt} = R$$

$$\frac{dx}{dt} = R$$

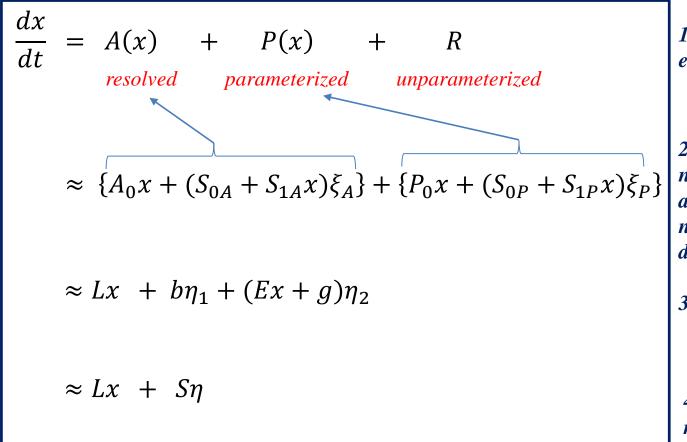
1. P and R are generally empirical

from nonlinear GCMs (top) to linear stochastically forced models (bottom)



- 1. P and R are generally empirical
- 2. Approximate chaotically nonlinear portions of A(x) and P(x) as linear terms plus noise. Missing terms are deterministic nonlinearity

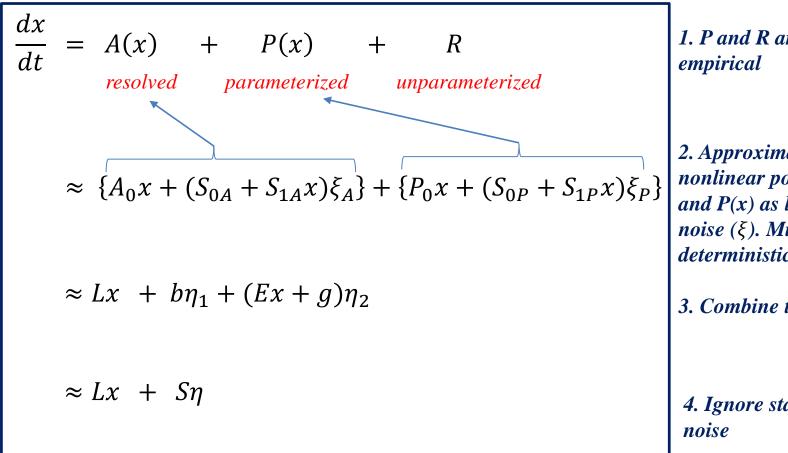
from nonlinear GCMs (top) to linear stochastically forced models (bottom)



- 1. P and R are generally empirical
- 2. Approximate chaotically nonlinear portions of A(x) and P(x) as linear terms plus noise (ξ) . Missing terms are deterministic nonlinearity
- 3. Combine terms.

4. Ignore state-dependent noise

from nonlinear GCMs (top) to linear stochastically forced models (bottom)



1. P and R are generally

- 2. Approximate chaotically nonlinear portions of A(x)and P(x) as linear terms plus noise (ξ) . Missing terms are deterministic nonlinearity
- 3. Combine terms.

4. Ignore state-dependent

Q: How much of the predictability of x can we capture this way? OR: How much skill is lost to the missing terms?

Linear Inverse Model (LIM)

Empirically model the *evolution* of climate anomalies with the linear stochastically forced dynamical system

$$d\mathbf{x}/dt = \mathbf{L}\mathbf{x} + \mathbf{S}\boldsymbol{\eta}$$

 $\mathbf{x}(t)$: series of maps, \mathbf{L} : stable operator, $\mathbf{S}\boldsymbol{\eta}$: white noise (also maps) where \mathbf{S} could be linearly dependent on \mathbf{x}

- Linear model, not linearization of equations: characterize predictable dynamics in nonlinear system
- Multivariate, not univariate, nonnormal linear dynamics: anomalies can growth and evolve
- (Ensemble mean) forecasts for lead τ : $\mathbf{x}(t+\tau) = \exp(\mathbf{L}\tau)\mathbf{x}(t)$; ensemble spread due to noise
- "Forecast the forecast skill": based on forecast signal-to-noise

"C-LIM": monthly mean tropical anomalies (1958-2010)

Ocean: SST/SSH (sea surface height)

Atmosphere: 200&850 mb wind

Low-order model (prefiltered in 28 EOF space: 85/63/25% variance retained)

Determine LIM from 0 and 1-lag covariance of \mathbf{x} [$\mathbf{C}(1)\mathbf{C}(0)^{-1}$, as in AR1 model]

Hindcasts: determined from ten-fold cross-validation, verification data not EOF filtered

Simplifications: assume noise is independent of **x**, fixed **L** over analysis dataset

LIM skill is comparable to NMME ensemble mean and is often better than NMME component models

Month 6 anomaly correlation (AC) skill

LIM and NMME
mean have similar
patterns of SST skill,
which can be
explained by
expected LIM skill

NMME mean **Expected LIM** NASA GMAO062012

Individual NMME model ensemble means (bias corrected by model)

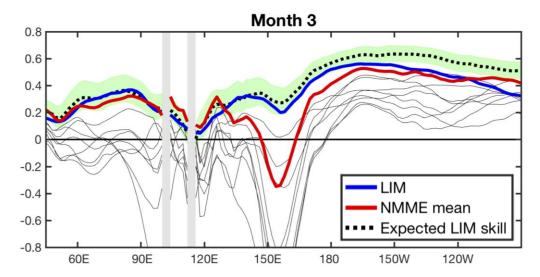
LIM skill is comparable to NMME ensemble mean and is often better than NMME component models

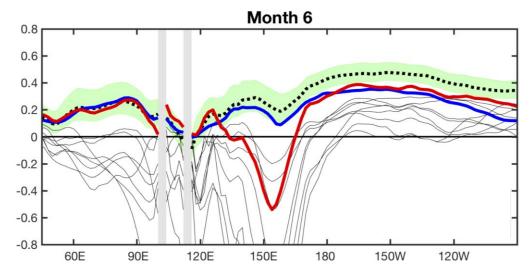
Most individual CGCMs have skill below both LIM and NMME multi-model mean skill, except in far eastern tropical Pacific

RMSE skill score = 1 – standardized error

Green shading: sampling uncertainty of expected LIM skill

Equatorial (2S-2N) RMSE skill score, 1982-2010



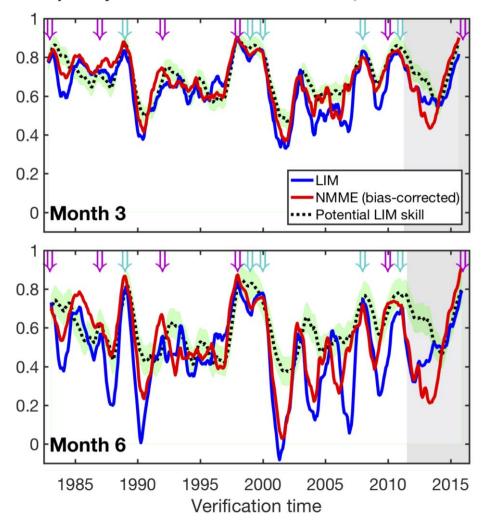


LIM predicts both LIM and NMME variations in SST skill: some years are more predictable than others

Monthly tropical IndoPacific pattern correlation skill, smoothed with 13-month running mean

r(NMME,LIM)=0.9/0.8 $r(\rho_{\infty},LIM)=0.9/0.7$

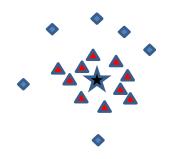
b) Tropical IndoPacific AC skill, 1982-2016



And now for something completely different...

"Model-analog" technique

- Match observations to states from a long CGCM control simulation
- Since these states are fully in balance in the model, we already know how they will evolve
- So: construct an analog model of the model itself to make forecasts, with no additional model integration necessary (reproduce model attractor)



★ : a target state

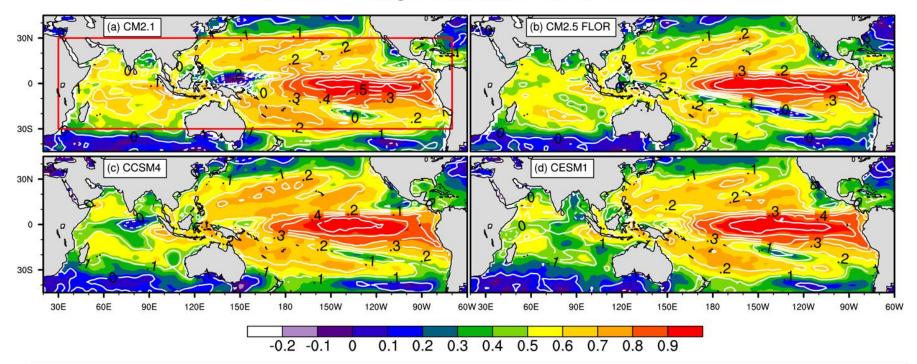
: analogs defined as the nearest k states to the target state

: other states in the training period

- For target state: analog ensemble is the *k* nearest states, defined by root-mean-square (RMS) distance (grid space; low-order PC space is similar)
- No weighting of members: ensemble-mean forecast is mean of evolution of analog ensemble (~20 members from ~500-yr run is sufficient)
- Analogs defined from SST/SSH anomalies from the tropical Indo-Pacific (30E-80W, 30S-30N); equally weighted (i.e., same state vector as LIM)

Initial model-analog representation of observations is only fair...

Initial model-analog reconstruction skill for observations



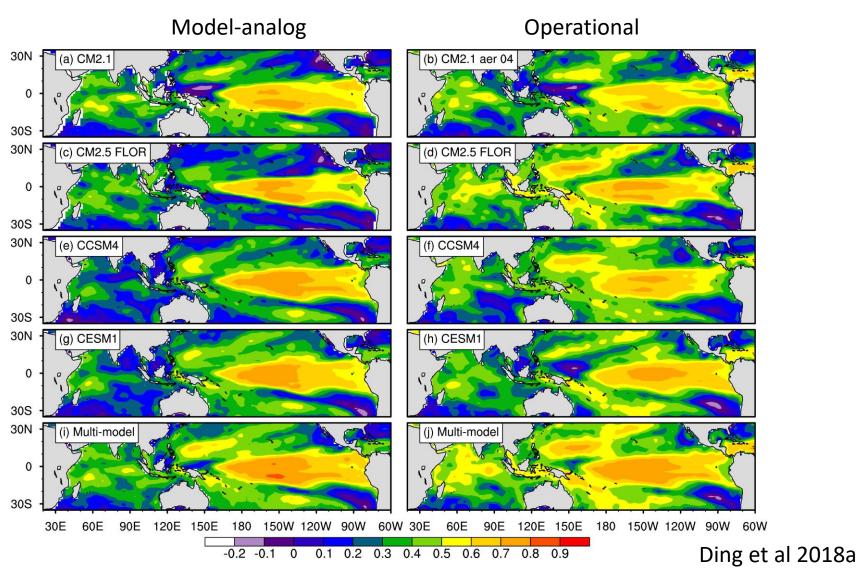
Correlation (shaded) and rms skill score (1-standardized error; contours) of ensemble mean analogs with target anomaly

Training run is entire control run for each model (varies in length)

Verification: 1982-2009 (observations)

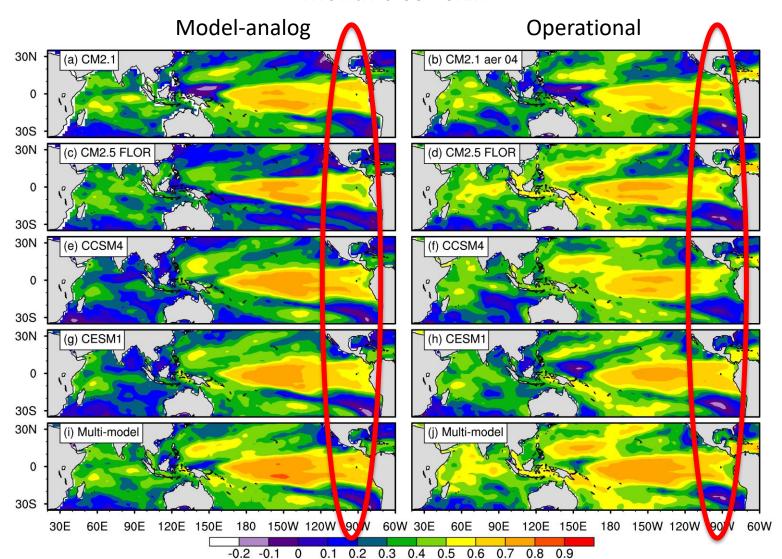
...yet model-analog skill matches corresponding model hindcast skill (1982-2009)

Month 6 SST skill



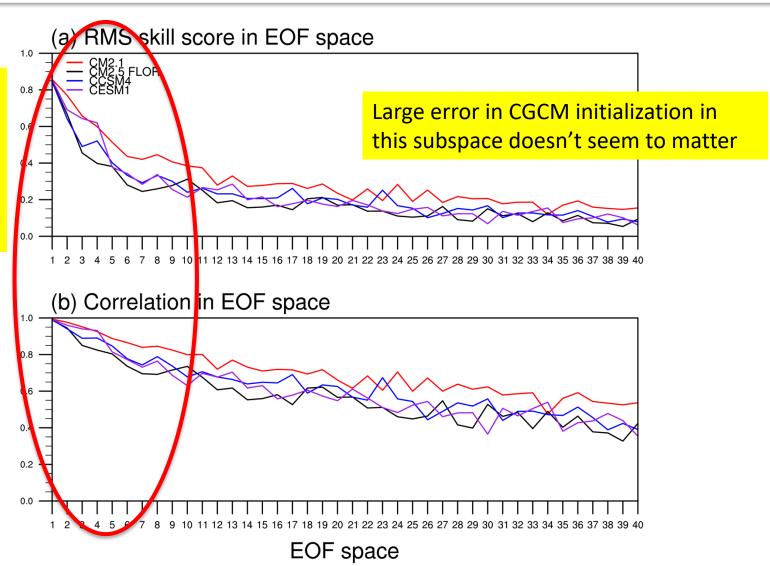
Model-analog skill *exceeds* corresponding model hindcast skill in eastern tropical Pacific

Month 6 SST skill

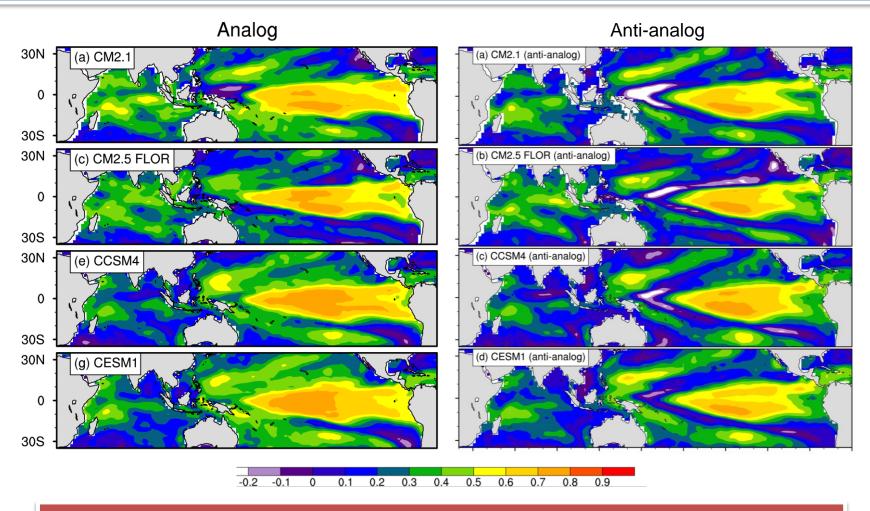


Ensemble mean analog representation of target anomalies better in low order EOFs

CGCM initialization in this subspace seems to be enough



How much of the model-analog skill is linear?



Anti-analog: same as model-analog but *change sign of target first*Where skill is similar, initial sign didn't matter

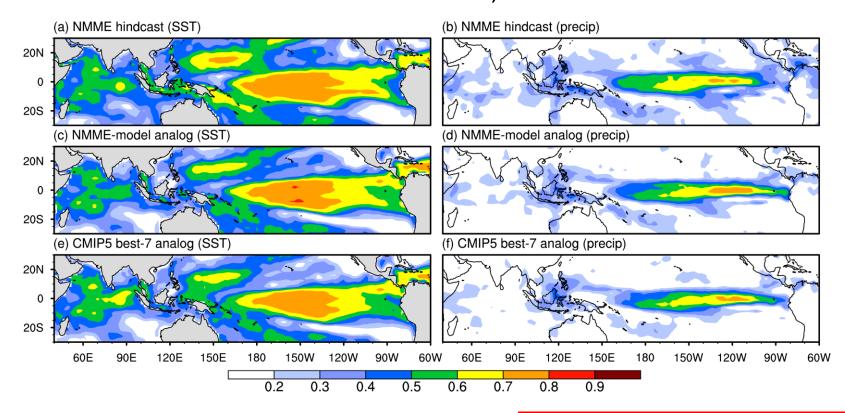
linear skill

Conclusion

- *Predictable* variations of tropical SST/SSH anomalies are driven by largely linear dynamics
 - Low-order linear model (LIM) reproduces multimodel CGCM ensemble skill and largely predicts <u>its variations</u>
 - Model-analogs reproduce multi-model CGCM ensemble skill, and most of this skill is low-order and linear
- Predictable nonlinear dynamics are of secondary importance except in eastern tropical Pacific (Niñol. 2)
 - Skill of model-analogs still constrains dynamics there
- ENSO characteristics that are "nonlinear"

Climate forecasting for the masses

Month 6 hindcast skill, 1982-2009



Operational model skill (top) compared with NMME model-analog skill (middle) and CMIP5 "best-7" model-analog skill (bottom)

Download CMIP5 output and roll your own!

Ding et al, GRL, submitted

Month 6 probabilistic skill: model-analog ensemble is also comparable to hindcast ensemble, despite large initial ensemble spread

Top panels: RPSS (Rank Probability Skill Score) is higher for model-analog in tropical Pacific

Bottom panels: Reliability and frequency of occurrence (i.e., "sharpness"): model-analogs are slightly more reliable and less sharp

